doi: 10.3934/naco.2019042

Numerical solutions of Volterra integro-differential equations using General Linear Method

1. 

School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia

2. 

Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

* Corresponding author: faranak.rabiei@monash.edu; faranak.rabiei@gmail.com

The reviewing process of the paper is handled by Gafurjan Ibragimov, Siti Hasana Sapar and Siti Nur Iqmal Ibrahim

Received  February 2018 Revised  June 2018 Published  August 2019

In this paper, a third order General Linear Method for finding the numerical solution of Volterra integro-differential equation is considered. The order conditions of the proposed method are derived based on techniques of B-series and 'rooted trees'. The integral operator in Volterra integro-differential equation approximated using Simpson's rule and Lagrange interpolation is discussed. To illustrate the efficiency of third order General Linear Method, we compare the method with a third order Runge-Kutta method.

Citation: Faranak Rabiei, Fatin Abd Hamid, Zanariah Abd Majid, Fudziah Ismail. Numerical solutions of Volterra integro-differential equations using General Linear Method. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2019042
References:
[1]

J. C. Butcher, General linear methods, Acta Numerica, 15 (2006), 157-256. doi: 10.1017/S0962492906220014. Google Scholar

[2]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley and Sons, Chichester, 2008. doi: 10.1002/9781119121534. Google Scholar

[3]

P. ChartierE. Hairer and G. Vilmart, Algebraic structures of B-series, Foundations of Computational Mathematics, 10 (2010), 407-427. doi: 10.1007/s10208-010-9065-1. Google Scholar

[4] J. R. Dormand, Numerical Methods for Differential Equations: A Computational Approach, CRC Press, Florida, 1992. doi: 10.1201/9781351075107. Google Scholar
[5]

A. Filiz, A fourth-order robust numerical method for integro-differential equations, Asian Journal of Fuzzy and Applied Mathematics, 1 (2013), 28-33. Google Scholar

[6]

A. Filiz, Numerical solution of linear volterra integro-differential equations using runge-kutta-felhberg method, Applied and Computational Mathematics, 1 (2014), 9-14. Google Scholar

[7]

A. Filiz, General linear methods for ordinary differential equations, Mathematics and Computers in Simulation, 79 (2009), 1834-1845. doi: 10.1016/j.matcom.2007.02.006. Google Scholar

[8]

P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.Google Scholar

[9]

F. RabieiF. A. HamidM. M. Rashidi and F. Ismail, Numerical simulation of fuzzy differential equations using general linear method and B-series, Advances in Mechanical Engineering, 9 (2010), 1-16. Google Scholar

[10]

B. Raftari, Numerical solutions of the linear volterra integro-differential equations: Homotopy perturbation method and finite difference method, World Applied Sciences Journal, 9 (2010), 7-12. Google Scholar

[11]

A. M. Wazwaz, Linear and Nonlinear Integral Equations, Springer, Beijing, 2011. doi: 10.1007/978-3-642-21449-3. Google Scholar

[12]

M. Zarebnia, Sinc numerical solution for the Volterra integro-differential equation, Nonlinear Sci. Numer. Simulat., 15 (2010), 700-706. doi: 10.1016/j.cnsns.2009.04.021. Google Scholar

show all references

References:
[1]

J. C. Butcher, General linear methods, Acta Numerica, 15 (2006), 157-256. doi: 10.1017/S0962492906220014. Google Scholar

[2]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley and Sons, Chichester, 2008. doi: 10.1002/9781119121534. Google Scholar

[3]

P. ChartierE. Hairer and G. Vilmart, Algebraic structures of B-series, Foundations of Computational Mathematics, 10 (2010), 407-427. doi: 10.1007/s10208-010-9065-1. Google Scholar

[4] J. R. Dormand, Numerical Methods for Differential Equations: A Computational Approach, CRC Press, Florida, 1992. doi: 10.1201/9781351075107. Google Scholar
[5]

A. Filiz, A fourth-order robust numerical method for integro-differential equations, Asian Journal of Fuzzy and Applied Mathematics, 1 (2013), 28-33. Google Scholar

[6]

A. Filiz, Numerical solution of linear volterra integro-differential equations using runge-kutta-felhberg method, Applied and Computational Mathematics, 1 (2014), 9-14. Google Scholar

[7]

A. Filiz, General linear methods for ordinary differential equations, Mathematics and Computers in Simulation, 79 (2009), 1834-1845. doi: 10.1016/j.matcom.2007.02.006. Google Scholar

[8]

P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.Google Scholar

[9]

F. RabieiF. A. HamidM. M. Rashidi and F. Ismail, Numerical simulation of fuzzy differential equations using general linear method and B-series, Advances in Mechanical Engineering, 9 (2010), 1-16. Google Scholar

[10]

B. Raftari, Numerical solutions of the linear volterra integro-differential equations: Homotopy perturbation method and finite difference method, World Applied Sciences Journal, 9 (2010), 7-12. Google Scholar

[11]

A. M. Wazwaz, Linear and Nonlinear Integral Equations, Springer, Beijing, 2011. doi: 10.1007/978-3-642-21449-3. Google Scholar

[12]

M. Zarebnia, Sinc numerical solution for the Volterra integro-differential equation, Nonlinear Sci. Numer. Simulat., 15 (2010), 700-706. doi: 10.1016/j.cnsns.2009.04.021. Google Scholar

Figure 1.  Log maximum error versus number of functions evaluations for Problem 1
Figure 2.  Log maximum error versus number of functions evaluations for Problem 2
Figure 3.  Log maximum error versus number of functions evaluations for Problem 3
Figure 4.  Log maximum error versus number of functions evaluations for Problem 4
Figure 5.  Log maximum error versus number of functions evaluations for Problem 5
Table 1.  Matrix representation of coefficients of GLM.
$ A_{s\times s} $ $ U_{s\times r} $
$ B_{r\times s} $ $ V_{r\times r} $
$ A_{s\times s} $ $ U_{s\times r} $
$ B_{r\times s} $ $ V_{r\times r} $
Table 2.  Matrix coefficients of GLM with $ s = 3 $, $ r = 2 $.
$\left[ {\begin{array}{*{20}{l}} 0&0&0\\ {{a_{21}}}&0&0\\ {{a_{31}}}&{{a_{32}}}&0 \end{array}} \right] $ $\left[ {\begin{array}{*{20}{l}} {{u_{11}}}&{{u_{12}}}\\ {{u_{21}}}&{{u_{22}}}\\ {{u_{31}}}&{{u_{32}}} \end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}} {{b_{11}}}&{{b_{12}}}&{{b_{13}}}\\ {{b_{21}}}&{{b_{22}}}&{{b_{23}}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} 1&{{v_{12}}}\\ {{v_{21}}}&0 \end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}} 0&0&0\\ {{a_{21}}}&0&0\\ {{a_{31}}}&{{a_{32}}}&0 \end{array}} \right] $ $\left[ {\begin{array}{*{20}{l}} {{u_{11}}}&{{u_{12}}}\\ {{u_{21}}}&{{u_{22}}}\\ {{u_{31}}}&{{u_{32}}} \end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}} {{b_{11}}}&{{b_{12}}}&{{b_{13}}}\\ {{b_{21}}}&{{b_{22}}}&{{b_{23}}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} 1&{{v_{12}}}\\ {{v_{21}}}&0 \end{array}} \right]$
Table 3.  Order conditions of GLM up to order three.
No Order conditions
1 $ b_{11}(u_{11}+u_{12})+b_{12}(u_{21}+u_{22})+b_{13}(u_{31}+u_{32})-v_{12}=1 $
2 $ b_{21}(u_{11}+u_{12})+b_{22}(u_{21}+u_{22})+b_{23}(u_{31}+u_{32})=0 $
3 $ -b_{11}u_{12}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big) $
$ \qquad+v_{12}\xi_{22}=\frac{1}{2} $
4 $ -b_{21}u_{12}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)=0 $
5 $ b_{11}u_{12}^{2}+b_{12}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2} $
$ \qquad+v_{12}\xi_{23}=\frac{1}{3} $
6 $ b_{21}u_{12}^{2}+b_{22}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2}=0 $
7 $ b_{11}u_{12}\xi_{22}+b_{12}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{13}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22}) $
$ \qquad +u_{32}\xi_{22}\big)+v_{12}\xi_{24}=\frac{1}{6} $
8 $ b_{21}u_{12}\xi_{22}+b_{22}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{23}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22}) $
$ \qquad+u_{32}\xi_{22}\big)=0 $
9 $ -b_{11}u_{12}^{3}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{13}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22})-u_{32}\big)^{3} $
$ \qquad+v_{12}\xi_{25}\frac{1}{4}=\frac{1}{4} $
10 $ -b_{21}u_{12}^{3}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{23}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22}) $
$ \qquad-u_{32}\big)^{3}=0 $
11 $ -b_{11}u_{12}^{2}\xi_{22} + b_{12}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32} $
$ \qquad (u_{21}+u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)+v_{12}\xi_{26} =\frac{1}{8} $
12 $ -b_{21}u_{12}^{2}\xi_{22} + b_{22}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{23}\big(a_{31}(u_{11} + u_{12}) $
$ \qquad+a_{32}(u_{21} + u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)=0 $
13 $ b_{11}u_{12}\xi_{23} + b_{12}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{13}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2}+u_{32}\xi_{23}\big) $
$ \qquad+v_{12}\xi_{27}=\frac{1}{12} $
14 $ b_{21}u_{12}\xi_{23} + b_{22}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{23}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2} $
$ \qquad+u_{32}\xi_{23}\big)=0 $
15 $ b_{11}u_{12}\xi_{24} + b_{12}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{13}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12})+u_{32}\xi_{24}\big) $
$ \qquad+v_{12}\xi_{28}=\frac{1}{24} $
16 $ b_{21}u_{12}\xi_{24} + b_{22}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{23}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12}) $
$ \qquad+u_{32}\xi_{24}\big)=0 $
No Order conditions
1 $ b_{11}(u_{11}+u_{12})+b_{12}(u_{21}+u_{22})+b_{13}(u_{31}+u_{32})-v_{12}=1 $
2 $ b_{21}(u_{11}+u_{12})+b_{22}(u_{21}+u_{22})+b_{23}(u_{31}+u_{32})=0 $
3 $ -b_{11}u_{12}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big) $
$ \qquad+v_{12}\xi_{22}=\frac{1}{2} $
4 $ -b_{21}u_{12}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)=0 $
5 $ b_{11}u_{12}^{2}+b_{12}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2} $
$ \qquad+v_{12}\xi_{23}=\frac{1}{3} $
6 $ b_{21}u_{12}^{2}+b_{22}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2}=0 $
7 $ b_{11}u_{12}\xi_{22}+b_{12}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{13}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22}) $
$ \qquad +u_{32}\xi_{22}\big)+v_{12}\xi_{24}=\frac{1}{6} $
8 $ b_{21}u_{12}\xi_{22}+b_{22}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{23}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22}) $
$ \qquad+u_{32}\xi_{22}\big)=0 $
9 $ -b_{11}u_{12}^{3}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{13}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22})-u_{32}\big)^{3} $
$ \qquad+v_{12}\xi_{25}\frac{1}{4}=\frac{1}{4} $
10 $ -b_{21}u_{12}^{3}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{23}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22}) $
$ \qquad-u_{32}\big)^{3}=0 $
11 $ -b_{11}u_{12}^{2}\xi_{22} + b_{12}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32} $
$ \qquad (u_{21}+u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)+v_{12}\xi_{26} =\frac{1}{8} $
12 $ -b_{21}u_{12}^{2}\xi_{22} + b_{22}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{23}\big(a_{31}(u_{11} + u_{12}) $
$ \qquad+a_{32}(u_{21} + u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)=0 $
13 $ b_{11}u_{12}\xi_{23} + b_{12}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{13}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2}+u_{32}\xi_{23}\big) $
$ \qquad+v_{12}\xi_{27}=\frac{1}{12} $
14 $ b_{21}u_{12}\xi_{23} + b_{22}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{23}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2} $
$ \qquad+u_{32}\xi_{23}\big)=0 $
15 $ b_{11}u_{12}\xi_{24} + b_{12}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{13}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12})+u_{32}\xi_{24}\big) $
$ \qquad+v_{12}\xi_{28}=\frac{1}{24} $
16 $ b_{21}u_{12}\xi_{24} + b_{22}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{23}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12}) $
$ \qquad+u_{32}\xi_{24}\big)=0 $
Table 4.  Coefficients Set 1 of third order GLM
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{13}{18} $ $ u_{21}=\frac{7}{9} $ $ u_{22}=\frac{2}{9} $
$ a_{31}=\frac{-17}{9} $ $ a_{32}=2 $ $ u_{31}=\frac{17}{9} $ $ u_{32}=\frac{-8}{9} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{13}{18} $ $ u_{21}=\frac{7}{9} $ $ u_{22}=\frac{2}{9} $
$ a_{31}=\frac{-17}{9} $ $ a_{32}=2 $ $ u_{31}=\frac{17}{9} $ $ u_{32}=\frac{-8}{9} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
Table 5.  Coefficients Set 2 of third order GLM
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{2}{3} $ $ u_{21}=\frac{5}{6} $ $ u_{22}=\frac{1}{6} $
$ a_{31}=\frac{-5}{3} $ $ a_{32}=2 $ $ u_{31}=\frac{5}{3} $ $ u_{32}=\frac{-2}{3} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{2}{3} $ $ u_{21}=\frac{5}{6} $ $ u_{22}=\frac{1}{6} $
$ a_{31}=\frac{-5}{3} $ $ a_{32}=2 $ $ u_{31}=\frac{5}{3} $ $ u_{32}=\frac{-2}{3} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
Table 6.  Coefficients Set 3 of third order GLM
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{5}{6} $ $ u_{21}=\frac{2}{3} $ $ u_{22}=\frac{1}{3} $
$ a_{31}=\frac{-7}{3} $ $ a_{32}=2 $ $ u_{31}=\frac{7}{3} $ $ u_{32}=\frac{-4}{3} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
$ u_{11}=1 $ $ u_{12}=0 $
$ a_{21}=\frac{5}{6} $ $ u_{21}=\frac{2}{3} $ $ u_{22}=\frac{1}{3} $
$ a_{31}=\frac{-7}{3} $ $ a_{32}=2 $ $ u_{31}=\frac{7}{3} $ $ u_{32}=\frac{-4}{3} $
$ b_{11}=\frac{1}{6} $ $ b_{12}=\frac{2}{3} $ $ b_{13}=\frac{1}{6} $ $ v_{11}=1 $ $ v_{12}=0 $
$ b_{21}=0 $ $ b_{22}=0 $ $ b_{23}=0 $ $ v_{21}=1 $ $ v_{22}=0 $
Table 7.  Maximum global errors for Problem 1
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 1.2347\times 10^{-6} $ $ 4.7137\times 10^{-6} $
$ h=0.025 $ $ 9.9859\times 10^{-9} $ $ 7.1772\times 10^{-8} $
$ h=0.01 $ $ 5.6041\times 10^{-10} $ $ 4.6094\times 10^{-9} $
$ h=0.005 $ $ 6.7079\times 10^{-11} $ $ 5.7715\times 10^{-10} $
$ h=0.001 $ $ 5.1845\times 10^{-13} $ $ 4.6243\times 10^{-12} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 1.2347\times 10^{-6} $ $ 4.7137\times 10^{-6} $
$ h=0.025 $ $ 9.9859\times 10^{-9} $ $ 7.1772\times 10^{-8} $
$ h=0.01 $ $ 5.6041\times 10^{-10} $ $ 4.6094\times 10^{-9} $
$ h=0.005 $ $ 6.7079\times 10^{-11} $ $ 5.7715\times 10^{-10} $
$ h=0.001 $ $ 5.1845\times 10^{-13} $ $ 4.6243\times 10^{-12} $
Table 8.  Maximum global errors for Problem 2
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 2.4606\times 10^{-6} $ $ 6.9906\times 10^{-6} $
$ h=0.025 $ $ 1.6319\times 10^{-8} $ $ 1.0137\times 10^{-7} $
$ h=0.01 $ $ 8.3870\times 10^{-10} $ $ 6.4622\times 10^{-9} $
$ h=0.005 $ $ 9.7077\times 10^{-11} $ $ 8.0749\times 10^{-10} $
$ h=0.001 $ $ 7.2935\times 10^{-13} $ $ 6.4604\times 10^{-12} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 2.4606\times 10^{-6} $ $ 6.9906\times 10^{-6} $
$ h=0.025 $ $ 1.6319\times 10^{-8} $ $ 1.0137\times 10^{-7} $
$ h=0.01 $ $ 8.3870\times 10^{-10} $ $ 6.4622\times 10^{-9} $
$ h=0.005 $ $ 9.7077\times 10^{-11} $ $ 8.0749\times 10^{-10} $
$ h=0.001 $ $ 7.2935\times 10^{-13} $ $ 6.4604\times 10^{-12} $
Table 9.  Maximum global errors for Problem 3
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 3.9332\times 10^{-6} $ $ 4.8141\times 10^{-5} $
$ h=0.025 $ $ 1.4323\times 10^{-7} $ $ 1.4400\times 10^{-6} $
$ h=0.01 $ $ 1.0939\times 10^{-8} $ $ 1.0134\times 10^{-7} $
$ h=0.005 $ $ 1.4325\times 10^{-9} $ $ 1.3052\times 10^{-8} $
$ h=0.001 $ $ 1.1851\times 10^{-11} $ $ 1.0688\times 10^{-10} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 3.9332\times 10^{-6} $ $ 4.8141\times 10^{-5} $
$ h=0.025 $ $ 1.4323\times 10^{-7} $ $ 1.4400\times 10^{-6} $
$ h=0.01 $ $ 1.0939\times 10^{-8} $ $ 1.0134\times 10^{-7} $
$ h=0.005 $ $ 1.4325\times 10^{-9} $ $ 1.3052\times 10^{-8} $
$ h=0.001 $ $ 1.1851\times 10^{-11} $ $ 1.0688\times 10^{-10} $
Table 10.  Maximum global errors for Problem 4
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 4.5416\times 10^{-6} $ $ 1.4256\times 10^{-5} $
$ h=0.025 $ $ 1.7061\times 10^{-8} $ $ 2.5908\times 10^{-7} $
$ h=0.01 $ $ 1.4270\times 10^{-9} $ $ 1.7075\times 10^{-8} $
$ h=0.005 $ $ 2.1002\times 10^{-10} $ $ 2.1553\times 10^{-9} $
$ h=0.001 $ $ 1.8836\times 10^{-12} $ $ 1.7377\times 10^{-11} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 4.5416\times 10^{-6} $ $ 1.4256\times 10^{-5} $
$ h=0.025 $ $ 1.7061\times 10^{-8} $ $ 2.5908\times 10^{-7} $
$ h=0.01 $ $ 1.4270\times 10^{-9} $ $ 1.7075\times 10^{-8} $
$ h=0.005 $ $ 2.1002\times 10^{-10} $ $ 2.1553\times 10^{-9} $
$ h=0.001 $ $ 1.8836\times 10^{-12} $ $ 1.7377\times 10^{-11} $
Table 11.  Maximum global errors for Problem 5
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 6.3429\times 10^{-6} $ $ 3.3432\times 10^{-5} $
$ h=0.025 $ $ 4.4142\times 10^{-8} $ $ 6.3237\times 10^{-7} $
$ h=0.01 $ $ 4.0164\times 10^{-9} $ $ 4.1259\times 10^{-8} $
$ h=0.005 $ $ 5.4245\times 10^{-10} $ $ 5.1811\times 10^{-9} $
$ h=0.001 $ $ 4.5689\times 10^{-12} $ $ 4.1572\times 10^{-11} $
GLM, $ s=3 $ RK, $ s=3 $
Step size MAXE
$ h=0.1 $ $ 6.3429\times 10^{-6} $ $ 3.3432\times 10^{-5} $
$ h=0.025 $ $ 4.4142\times 10^{-8} $ $ 6.3237\times 10^{-7} $
$ h=0.01 $ $ 4.0164\times 10^{-9} $ $ 4.1259\times 10^{-8} $
$ h=0.005 $ $ 5.4245\times 10^{-10} $ $ 5.1811\times 10^{-9} $
$ h=0.001 $ $ 4.5689\times 10^{-12} $ $ 4.1572\times 10^{-11} $
Table 12.  Total number of function evaluations Problems 1 - 5
GLM, $ s=3 $ RK, $ s=3 $
Step size TFE
$ h=0.1 $ $ 34 $ $ 34 $
$ h=0.025 $ $ 124 $ $ 124 $
$ h=0.01 $ $ 304 $ $ 304 $
$ h=0.005 $ $ 604 $ $ 604 $
$ h=0.001 $ $ 3004 $ $ 3004 $
GLM, $ s=3 $ RK, $ s=3 $
Step size TFE
$ h=0.1 $ $ 34 $ $ 34 $
$ h=0.025 $ $ 124 $ $ 124 $
$ h=0.01 $ $ 304 $ $ 304 $
$ h=0.005 $ $ 604 $ $ 604 $
$ h=0.001 $ $ 3004 $ $ 3004 $
[1]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[2]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[3]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[4]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053

[5]

Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure & Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261

[6]

Dariusz Idczak, Stanisław Walczak. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2281-2292. doi: 10.3934/dcdsb.2019095

[7]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[8]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[9]

Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004

[10]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[11]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[12]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[13]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[14]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[15]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[16]

Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053

[17]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[18]

Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007

[19]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[20]

John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342-350. doi: 10.3934/proc.2003.2003.342

 Impact Factor: 

Metrics

  • PDF downloads (27)
  • HTML views (80)
  • Cited by (0)

[Back to Top]