# American Institute of Mathematical Sciences

doi: 10.3934/naco.2019042

## Numerical solutions of Volterra integro-differential equations using General Linear Method

 1 School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia 2 Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

* Corresponding author: faranak.rabiei@monash.edu; faranak.rabiei@gmail.com

The reviewing process of the paper is handled by Gafurjan Ibragimov, Siti Hasana Sapar and Siti Nur Iqmal Ibrahim

Received  February 2018 Revised  June 2018 Published  August 2019

In this paper, a third order General Linear Method for finding the numerical solution of Volterra integro-differential equation is considered. The order conditions of the proposed method are derived based on techniques of B-series and 'rooted trees'. The integral operator in Volterra integro-differential equation approximated using Simpson's rule and Lagrange interpolation is discussed. To illustrate the efficiency of third order General Linear Method, we compare the method with a third order Runge-Kutta method.

Citation: Faranak Rabiei, Fatin Abd Hamid, Zanariah Abd Majid, Fudziah Ismail. Numerical solutions of Volterra integro-differential equations using General Linear Method. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2019042
##### References:

show all references

##### References:
Log maximum error versus number of functions evaluations for Problem 1
Log maximum error versus number of functions evaluations for Problem 2
Log maximum error versus number of functions evaluations for Problem 3
Log maximum error versus number of functions evaluations for Problem 4
Log maximum error versus number of functions evaluations for Problem 5
Matrix representation of coefficients of GLM.
 $A_{s\times s}$ $U_{s\times r}$ $B_{r\times s}$ $V_{r\times r}$
 $A_{s\times s}$ $U_{s\times r}$ $B_{r\times s}$ $V_{r\times r}$
Matrix coefficients of GLM with $s = 3$, $r = 2$.
 $\left[ {\begin{array}{*{20}{l}} 0&0&0\\ {{a_{21}}}&0&0\\ {{a_{31}}}&{{a_{32}}}&0 \end{array}} \right]$ $\left[ {\begin{array}{*{20}{l}} {{u_{11}}}&{{u_{12}}}\\ {{u_{21}}}&{{u_{22}}}\\ {{u_{31}}}&{{u_{32}}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{l}} {{b_{11}}}&{{b_{12}}}&{{b_{13}}}\\ {{b_{21}}}&{{b_{22}}}&{{b_{23}}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} 1&{{v_{12}}}\\ {{v_{21}}}&0 \end{array}} \right]$
 $\left[ {\begin{array}{*{20}{l}} 0&0&0\\ {{a_{21}}}&0&0\\ {{a_{31}}}&{{a_{32}}}&0 \end{array}} \right]$ $\left[ {\begin{array}{*{20}{l}} {{u_{11}}}&{{u_{12}}}\\ {{u_{21}}}&{{u_{22}}}\\ {{u_{31}}}&{{u_{32}}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{l}} {{b_{11}}}&{{b_{12}}}&{{b_{13}}}\\ {{b_{21}}}&{{b_{22}}}&{{b_{23}}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} 1&{{v_{12}}}\\ {{v_{21}}}&0 \end{array}} \right]$
Order conditions of GLM up to order three.
 No Order conditions 1 $b_{11}(u_{11}+u_{12})+b_{12}(u_{21}+u_{22})+b_{13}(u_{31}+u_{32})-v_{12}=1$ 2 $b_{21}(u_{11}+u_{12})+b_{22}(u_{21}+u_{22})+b_{23}(u_{31}+u_{32})=0$ 3 $-b_{11}u_{12}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)$ $\qquad+v_{12}\xi_{22}=\frac{1}{2}$ 4 $-b_{21}u_{12}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)=0$ 5 $b_{11}u_{12}^{2}+b_{12}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2}$ $\qquad+v_{12}\xi_{23}=\frac{1}{3}$ 6 $b_{21}u_{12}^{2}+b_{22}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2}=0$ 7 $b_{11}u_{12}\xi_{22}+b_{12}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{13}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})$ $\qquad +u_{32}\xi_{22}\big)+v_{12}\xi_{24}=\frac{1}{6}$ 8 $b_{21}u_{12}\xi_{22}+b_{22}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{23}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})$ $\qquad+u_{32}\xi_{22}\big)=0$ 9 $-b_{11}u_{12}^{3}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{13}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22})-u_{32}\big)^{3}$ $\qquad+v_{12}\xi_{25}\frac{1}{4}=\frac{1}{4}$ 10 $-b_{21}u_{12}^{3}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{23}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22})$ $\qquad-u_{32}\big)^{3}=0$ 11 $-b_{11}u_{12}^{2}\xi_{22} + b_{12}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}$ $\qquad (u_{21}+u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)+v_{12}\xi_{26} =\frac{1}{8}$ 12 $-b_{21}u_{12}^{2}\xi_{22} + b_{22}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{23}\big(a_{31}(u_{11} + u_{12})$ $\qquad+a_{32}(u_{21} + u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)=0$ 13 $b_{11}u_{12}\xi_{23} + b_{12}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{13}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2}+u_{32}\xi_{23}\big)$ $\qquad+v_{12}\xi_{27}=\frac{1}{12}$ 14 $b_{21}u_{12}\xi_{23} + b_{22}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{23}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2}$ $\qquad+u_{32}\xi_{23}\big)=0$ 15 $b_{11}u_{12}\xi_{24} + b_{12}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{13}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12})+u_{32}\xi_{24}\big)$ $\qquad+v_{12}\xi_{28}=\frac{1}{24}$ 16 $b_{21}u_{12}\xi_{24} + b_{22}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{23}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12})$ $\qquad+u_{32}\xi_{24}\big)=0$
 No Order conditions 1 $b_{11}(u_{11}+u_{12})+b_{12}(u_{21}+u_{22})+b_{13}(u_{31}+u_{32})-v_{12}=1$ 2 $b_{21}(u_{11}+u_{12})+b_{22}(u_{21}+u_{22})+b_{23}(u_{31}+u_{32})=0$ 3 $-b_{11}u_{12}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)$ $\qquad+v_{12}\xi_{22}=\frac{1}{2}$ 4 $-b_{21}u_{12}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)=0$ 5 $b_{11}u_{12}^{2}+b_{12}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2}$ $\qquad+v_{12}\xi_{23}=\frac{1}{3}$ 6 $b_{21}u_{12}^{2}+b_{22}\big(a_{21}(u_{11}+u_{12})-u_{22}\big)^{2}+b_{23}\big(a_{31}(u_{11} + u_{12})+a_{32}(u_{21} + u_{22})-u_{32}\big)^{2}=0$ 7 $b_{11}u_{12}\xi_{22}+b_{12}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{13}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})$ $\qquad +u_{32}\xi_{22}\big)+v_{12}\xi_{24}=\frac{1}{6}$ 8 $b_{21}u_{12}\xi_{22}+b_{22}\big(\xi_{22}u_{22} - a_{21}u_{12}\big)+b_{23}\big(-a_{31}u_{12} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})$ $\qquad+u_{32}\xi_{22}\big)=0$ 9 $-b_{11}u_{12}^{3}+b_{12}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{13}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22})-u_{32}\big)^{3}$ $\qquad+v_{12}\xi_{25}\frac{1}{4}=\frac{1}{4}$ 10 $-b_{21}u_{12}^{3}+b_{22}(a_{21}(u_{11} + u_{12})-u_{22})^{3}+b_{23}\big(a_{31}(u_{11} + u_{12}) +a_{32}(u_{21} + u_{22})$ $\qquad-u_{32}\big)^{3}=0$ 11 $-b_{11}u_{12}^{2}\xi_{22} + b_{12}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{13}\big(a_{31}(u_{11} + u_{12})+a_{32}$ $\qquad (u_{21}+u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)+v_{12}\xi_{26} =\frac{1}{8}$ 12 $-b_{21}u_{12}^{2}\xi_{22} + b_{22}(a_{21}(u_{11} + u_{12})-u_{22})(\xi_{22}u_{22}-a_{21}u_{12}) +b_{23}\big(a_{31}(u_{11} + u_{12})$ $\qquad+a_{32}(u_{21} + u_{22})-u_{32}\big)\big(-a_{31}u_{12}+a_{32}(a_{21}(u_{11}+u_{12})-u_{22})+u_{32}\xi_{22}\big)=0$ 13 $b_{11}u_{12}\xi_{23} + b_{12}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{13}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2}+u_{32}\xi_{23}\big)$ $\qquad+v_{12}\xi_{27}=\frac{1}{12}$ 14 $b_{21}u_{12}\xi_{23} + b_{22}(a_{21}u_{12}^{2}+\xi_{23}u_{22}) + b_{23}\big(a_{31}u_{12}^{2} + a_{32}(a_{21}(u_{11} + u_{12})-u_{22})^{2}$ $\qquad+u_{32}\xi_{23}\big)=0$ 15 $b_{11}u_{12}\xi_{24} + b_{12}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{13}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12})+u_{32}\xi_{24}\big)$ $\qquad+v_{12}\xi_{28}=\frac{1}{24}$ 16 $b_{21}u_{12}\xi_{24} + b_{22}(\xi_{22}a_{21}u_{12}+\xi_{24}u_{22}) + b_{23}\big(a_{31}u_{12}\xi_{22} + a_{32}(\xi_{22}u_{22} -a_{21}u_{12})$ $\qquad+u_{32}\xi_{24}\big)=0$
Coefficients Set 1 of third order GLM
 $u_{11}=1$ $u_{12}=0$ $a_{21}=\frac{13}{18}$ $u_{21}=\frac{7}{9}$ $u_{22}=\frac{2}{9}$ $a_{31}=\frac{-17}{9}$ $a_{32}=2$ $u_{31}=\frac{17}{9}$ $u_{32}=\frac{-8}{9}$ $b_{11}=\frac{1}{6}$ $b_{12}=\frac{2}{3}$ $b_{13}=\frac{1}{6}$ $v_{11}=1$ $v_{12}=0$ $b_{21}=0$ $b_{22}=0$ $b_{23}=0$ $v_{21}=1$ $v_{22}=0$
 $u_{11}=1$ $u_{12}=0$ $a_{21}=\frac{13}{18}$ $u_{21}=\frac{7}{9}$ $u_{22}=\frac{2}{9}$ $a_{31}=\frac{-17}{9}$ $a_{32}=2$ $u_{31}=\frac{17}{9}$ $u_{32}=\frac{-8}{9}$ $b_{11}=\frac{1}{6}$ $b_{12}=\frac{2}{3}$ $b_{13}=\frac{1}{6}$ $v_{11}=1$ $v_{12}=0$ $b_{21}=0$ $b_{22}=0$ $b_{23}=0$ $v_{21}=1$ $v_{22}=0$
Coefficients Set 2 of third order GLM
 $u_{11}=1$ $u_{12}=0$ $a_{21}=\frac{2}{3}$ $u_{21}=\frac{5}{6}$ $u_{22}=\frac{1}{6}$ $a_{31}=\frac{-5}{3}$ $a_{32}=2$ $u_{31}=\frac{5}{3}$ $u_{32}=\frac{-2}{3}$ $b_{11}=\frac{1}{6}$ $b_{12}=\frac{2}{3}$ $b_{13}=\frac{1}{6}$ $v_{11}=1$ $v_{12}=0$ $b_{21}=0$ $b_{22}=0$ $b_{23}=0$ $v_{21}=1$ $v_{22}=0$
 $u_{11}=1$ $u_{12}=0$ $a_{21}=\frac{2}{3}$ $u_{21}=\frac{5}{6}$ $u_{22}=\frac{1}{6}$ $a_{31}=\frac{-5}{3}$ $a_{32}=2$ $u_{31}=\frac{5}{3}$ $u_{32}=\frac{-2}{3}$ $b_{11}=\frac{1}{6}$ $b_{12}=\frac{2}{3}$ $b_{13}=\frac{1}{6}$ $v_{11}=1$ $v_{12}=0$ $b_{21}=0$ $b_{22}=0$ $b_{23}=0$ $v_{21}=1$ $v_{22}=0$
Coefficients Set 3 of third order GLM
 $u_{11}=1$ $u_{12}=0$ $a_{21}=\frac{5}{6}$ $u_{21}=\frac{2}{3}$ $u_{22}=\frac{1}{3}$ $a_{31}=\frac{-7}{3}$ $a_{32}=2$ $u_{31}=\frac{7}{3}$ $u_{32}=\frac{-4}{3}$ $b_{11}=\frac{1}{6}$ $b_{12}=\frac{2}{3}$ $b_{13}=\frac{1}{6}$ $v_{11}=1$ $v_{12}=0$ $b_{21}=0$ $b_{22}=0$ $b_{23}=0$ $v_{21}=1$ $v_{22}=0$
 $u_{11}=1$ $u_{12}=0$ $a_{21}=\frac{5}{6}$ $u_{21}=\frac{2}{3}$ $u_{22}=\frac{1}{3}$ $a_{31}=\frac{-7}{3}$ $a_{32}=2$ $u_{31}=\frac{7}{3}$ $u_{32}=\frac{-4}{3}$ $b_{11}=\frac{1}{6}$ $b_{12}=\frac{2}{3}$ $b_{13}=\frac{1}{6}$ $v_{11}=1$ $v_{12}=0$ $b_{21}=0$ $b_{22}=0$ $b_{23}=0$ $v_{21}=1$ $v_{22}=0$
Maximum global errors for Problem 1
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $1.2347\times 10^{-6}$ $4.7137\times 10^{-6}$ $h=0.025$ $9.9859\times 10^{-9}$ $7.1772\times 10^{-8}$ $h=0.01$ $5.6041\times 10^{-10}$ $4.6094\times 10^{-9}$ $h=0.005$ $6.7079\times 10^{-11}$ $5.7715\times 10^{-10}$ $h=0.001$ $5.1845\times 10^{-13}$ $4.6243\times 10^{-12}$
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $1.2347\times 10^{-6}$ $4.7137\times 10^{-6}$ $h=0.025$ $9.9859\times 10^{-9}$ $7.1772\times 10^{-8}$ $h=0.01$ $5.6041\times 10^{-10}$ $4.6094\times 10^{-9}$ $h=0.005$ $6.7079\times 10^{-11}$ $5.7715\times 10^{-10}$ $h=0.001$ $5.1845\times 10^{-13}$ $4.6243\times 10^{-12}$
Maximum global errors for Problem 2
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $2.4606\times 10^{-6}$ $6.9906\times 10^{-6}$ $h=0.025$ $1.6319\times 10^{-8}$ $1.0137\times 10^{-7}$ $h=0.01$ $8.3870\times 10^{-10}$ $6.4622\times 10^{-9}$ $h=0.005$ $9.7077\times 10^{-11}$ $8.0749\times 10^{-10}$ $h=0.001$ $7.2935\times 10^{-13}$ $6.4604\times 10^{-12}$
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $2.4606\times 10^{-6}$ $6.9906\times 10^{-6}$ $h=0.025$ $1.6319\times 10^{-8}$ $1.0137\times 10^{-7}$ $h=0.01$ $8.3870\times 10^{-10}$ $6.4622\times 10^{-9}$ $h=0.005$ $9.7077\times 10^{-11}$ $8.0749\times 10^{-10}$ $h=0.001$ $7.2935\times 10^{-13}$ $6.4604\times 10^{-12}$
Maximum global errors for Problem 3
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $3.9332\times 10^{-6}$ $4.8141\times 10^{-5}$ $h=0.025$ $1.4323\times 10^{-7}$ $1.4400\times 10^{-6}$ $h=0.01$ $1.0939\times 10^{-8}$ $1.0134\times 10^{-7}$ $h=0.005$ $1.4325\times 10^{-9}$ $1.3052\times 10^{-8}$ $h=0.001$ $1.1851\times 10^{-11}$ $1.0688\times 10^{-10}$
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $3.9332\times 10^{-6}$ $4.8141\times 10^{-5}$ $h=0.025$ $1.4323\times 10^{-7}$ $1.4400\times 10^{-6}$ $h=0.01$ $1.0939\times 10^{-8}$ $1.0134\times 10^{-7}$ $h=0.005$ $1.4325\times 10^{-9}$ $1.3052\times 10^{-8}$ $h=0.001$ $1.1851\times 10^{-11}$ $1.0688\times 10^{-10}$
Maximum global errors for Problem 4
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $4.5416\times 10^{-6}$ $1.4256\times 10^{-5}$ $h=0.025$ $1.7061\times 10^{-8}$ $2.5908\times 10^{-7}$ $h=0.01$ $1.4270\times 10^{-9}$ $1.7075\times 10^{-8}$ $h=0.005$ $2.1002\times 10^{-10}$ $2.1553\times 10^{-9}$ $h=0.001$ $1.8836\times 10^{-12}$ $1.7377\times 10^{-11}$
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $4.5416\times 10^{-6}$ $1.4256\times 10^{-5}$ $h=0.025$ $1.7061\times 10^{-8}$ $2.5908\times 10^{-7}$ $h=0.01$ $1.4270\times 10^{-9}$ $1.7075\times 10^{-8}$ $h=0.005$ $2.1002\times 10^{-10}$ $2.1553\times 10^{-9}$ $h=0.001$ $1.8836\times 10^{-12}$ $1.7377\times 10^{-11}$
Maximum global errors for Problem 5
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $6.3429\times 10^{-6}$ $3.3432\times 10^{-5}$ $h=0.025$ $4.4142\times 10^{-8}$ $6.3237\times 10^{-7}$ $h=0.01$ $4.0164\times 10^{-9}$ $4.1259\times 10^{-8}$ $h=0.005$ $5.4245\times 10^{-10}$ $5.1811\times 10^{-9}$ $h=0.001$ $4.5689\times 10^{-12}$ $4.1572\times 10^{-11}$
 GLM, $s=3$ RK, $s=3$ Step size MAXE $h=0.1$ $6.3429\times 10^{-6}$ $3.3432\times 10^{-5}$ $h=0.025$ $4.4142\times 10^{-8}$ $6.3237\times 10^{-7}$ $h=0.01$ $4.0164\times 10^{-9}$ $4.1259\times 10^{-8}$ $h=0.005$ $5.4245\times 10^{-10}$ $5.1811\times 10^{-9}$ $h=0.001$ $4.5689\times 10^{-12}$ $4.1572\times 10^{-11}$
Total number of function evaluations Problems 1 - 5
 GLM, $s=3$ RK, $s=3$ Step size TFE $h=0.1$ $34$ $34$ $h=0.025$ $124$ $124$ $h=0.01$ $304$ $304$ $h=0.005$ $604$ $604$ $h=0.001$ $3004$ $3004$
 GLM, $s=3$ RK, $s=3$ Step size TFE $h=0.1$ $34$ $34$ $h=0.025$ $124$ $124$ $h=0.01$ $304$ $304$ $h=0.005$ $604$ $604$ $h=0.001$ $3004$ $3004$
 [1] Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065 [2] Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119 [3] Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977 [4] Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053 [5] Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure & Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261 [6] Dariusz Idczak, Stanisław Walczak. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2281-2292. doi: 10.3934/dcdsb.2019095 [7] Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 [8] Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517 [9] Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004 [10] Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17 [11] Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160 [12] Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541 [13] Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191 [14] Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693 [15] Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015 [16] Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053 [17] Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249 [18] Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007 [19] Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040 [20] John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342-350. doi: 10.3934/proc.2003.2003.342

Impact Factor: