doi: 10.3934/naco.2019028

Approach to image segmentation based on interval neutrosophic set

1. 

Department of Mathematics, Dalian Maritime University, Dalian, 116026, P. R. China

2. 

College of Automation, Shenyang Aerospace University, Shenyang, 110136, P. R. China

3. 

Department of Mathematics, Dalian Maritime University, Dalian, 116026, P. R. China

* Corresponding author: Yan Ren, renyan1108@hotmail.com

Received  May 2018 Revised  April 2019 Published  May 2019

Fund Project: The first author is supported by NSF grant No.61602321, Aviation Science Foundation with No. 2017ZC54007, Science Fund Project of Liaoning Province Education Department with No. L201614, Natural Science Fund Project of Liaoning Province with No.20170540694, the Fundamental Research Funds for the Central Universities (No.3132018228) and the Doctor Startup Foundation of Shenyang Aerospace University13YB11

As a generalization of the fuzzy set and intuitionistic fuzzy set, the neutrosophic set (NS) have been developed to represent uncertain, imprecise, incomplete and inconsistent information existing in the real world. Now the interval neutrosophic set (INS) which is an expansion of the neutrosophic set have been proposed exactly to address issues with a set of numbers in the real unit interval, not just one specific number. After definition of concepts and operations, INS is applied to image segmentation. Images are converted to the INS domain, which is described using three membership interval sets: T, I and F. Then, in order to increase the contrast between membership and evaluate the indeterminacy, a fuzzy intensification for each element in the interval set is made and a score function in the INS is defined. Finally, the proposed method is employed to perform image segmentation using the traditional k-means clustering. The experimental results on a variety of images demonstrate that the proposed approach can segment different sorts of images. Especially, it can segment "clean" images and images with various levels of noise.

Citation: Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control & Optimization, doi: 10.3934/naco.2019028
References:
[1]

M. R. Anderberg, Cluster analysis for applications, Probability & Mathematical Statistics New York Academic Press, 1 (1973), 347-353.

[2]

K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag HD, 20 (1986), 87-96. doi: 10.1007/978-3-7908-1870-3.

[3]

K. T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Physica-Verlag HD, (1999), 343–349. doi: 10.1016/0165-0114(89)90205-4.

[4]

C. BaiD. Dhavale and J. Sarkis, Complex investment decisions using rough set and fuzzy C-means: An example of investment in green supply chains, European Journal of Operational Research, 248 (2016), 507-521. doi: 10.1016/j.ejor.2015.07.059.

[5]

H. D. ChengY. H. Chen and X. H. Jiang, Thresholding using two-dimensionalh histogram and fuzzy entropy principle, IEEE Transactions on Image Processing, 9 (2000), 732-735. doi: 10.1109/83.841949.

[6]

H. D. Cheng and Y. Guo, A new neutrosophic approach to image thresholding, New Mathematics & Natural Computation, 4 (2008), 291-308.

[7]

C. FengD. Zhao and M. Huang, Image segmentation using CUDA accelerated non-local means denoising and bias correction embedded fuzzy C-means (BCEFCM), Signal Processing, 122 (2016), 164-189.

[8]

Y. Guo, H. D. Cheng and W. Zhao et al., A novel image segmentation algorithm based on fuzzy C-means algorithm and neutrosophic set, JCIS-2008 Proceedings, 2008.

[9]

Y. Guo and H. D. Cheng, New neutrosophic approach to image segmentation, Pattern Recognition, 42 (2009), 587-595.

[10]

Y. Guo, A novel image edge detection algorithm based on neutrosophic set, Pergamon Press, Inc, 40 (2014), 3-25.

[11]

Y. Guo and A. Sengür, A novel image segmentation algorithm based on neutrosophic similarity clustering, Applied Soft Computing, 25 (2014), 391-398.

[12]

Y. Guo, A. Sengür and J. Ye, A novel image thresholding algorithm based on neutrosophic similarity score, Measurement, 58 (2014), 175-186.

[13]

Y. Guo and A. Sengür, NECM: Neutrosophic evidential C-means clustering algorithm, Neural Computing & Applications, 26 (2014), 1-11.

[14]

Y. Guo and A. Sengür, NCM: Neutrosophic C-means clustering algorithm, Pattern Recognition, 48 (2015), 2710-2724.

[15]

Y. Guo and Y. Akbulut et al., An efficient image segmentation algorithm using neutrosophic graph cut, Symmetry, 9 (2017), 185.

[16]

K. Hanbay and M. F. Talu, Segmentation of SAR images using improved artificial bee colony algorithm and neutrosophic set, Applied Soft Computing Journal, 21 (2014), 433-443.

[17]

T. Kanungo, D. M. Mount and N. S. Netanyahu et al., An efficient k-means clustering algorithm: Analysis and implementation, IEEE Transactions on Pattern Analysis & Machine Intelligence, 24 (2002), 881-892.

[18]

X. Liu, The fuzzy theory based on AFS algebras and AFS structure, Journal of Mathematical Analysis & Applications, 217 (1998), 459-478. doi: 10.1006/jmaa.1997.5718.

[19]

S. K. Pal and R. A. King, Image enhancement using smoothing with fuzzy sets, IEEE Transactions on Systems Man & Cybernetics, 11 (1981), 494-501.

[20]

S. K. Pal and R. A. King, Image enhancement using fuzzy sets, Electronics Letters, 16 (1980), 376-378.

[21]

A. Sengur and Y. Guo, Color texture image segmentation based on neutrosophic set and wavelet transformation, Computer Vision & Image Understanding, 115 (2011), 1134-1144.

[22]

J. Shan, H. D. Cheng and Y. Wang, A novel segmentation method for breast ultrasound images based on neutrosophic k-means clustering, Medical Physics, 39 (2012), 5669.

[23]

F. Smarandache, A unifying field in logics: Neutrosophic logic, Multiple-Valued Logic, 8 (1999), 489-503.

[24]

F. Smarandache, A unifying field in logics: Neutrsophic logic, neutrosophy, neutrosophic set, neutrosophic probability (Fourth edition), University of New Mexico, 332 (2002), 5-21.

[25]

F. Smarandache, Neutrosophic Topologies, 1999.

[26]

Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets & Systems, 20 (1986), 191-210. doi: 10.1016/0165-0114(86)90077-1.

[27]

J. K. Udupa and S. Samarasekera, Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation, Academic Press Inc., 58 (1996), 246-261.

[28]

H. WangP. Madiraju and Y. Zhang et al, Interval neutrosophic sets, Mathematics, 1 (2004), 274-277.

[29]

L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

[30]

H. Zhang, J. Wang and X. Chen, Interval neutrosophic sets and their application in multicriteria decision making problems, The Scientific World Journal, 2014 (2014), 645953.

[31]

X. Zhao and S. T. Wang, Neutrosophic image segmentation approach based on similarity, Application Research of Computers, 29 (2012), 2371-2374.

show all references

References:
[1]

M. R. Anderberg, Cluster analysis for applications, Probability & Mathematical Statistics New York Academic Press, 1 (1973), 347-353.

[2]

K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag HD, 20 (1986), 87-96. doi: 10.1007/978-3-7908-1870-3.

[3]

K. T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Physica-Verlag HD, (1999), 343–349. doi: 10.1016/0165-0114(89)90205-4.

[4]

C. BaiD. Dhavale and J. Sarkis, Complex investment decisions using rough set and fuzzy C-means: An example of investment in green supply chains, European Journal of Operational Research, 248 (2016), 507-521. doi: 10.1016/j.ejor.2015.07.059.

[5]

H. D. ChengY. H. Chen and X. H. Jiang, Thresholding using two-dimensionalh histogram and fuzzy entropy principle, IEEE Transactions on Image Processing, 9 (2000), 732-735. doi: 10.1109/83.841949.

[6]

H. D. Cheng and Y. Guo, A new neutrosophic approach to image thresholding, New Mathematics & Natural Computation, 4 (2008), 291-308.

[7]

C. FengD. Zhao and M. Huang, Image segmentation using CUDA accelerated non-local means denoising and bias correction embedded fuzzy C-means (BCEFCM), Signal Processing, 122 (2016), 164-189.

[8]

Y. Guo, H. D. Cheng and W. Zhao et al., A novel image segmentation algorithm based on fuzzy C-means algorithm and neutrosophic set, JCIS-2008 Proceedings, 2008.

[9]

Y. Guo and H. D. Cheng, New neutrosophic approach to image segmentation, Pattern Recognition, 42 (2009), 587-595.

[10]

Y. Guo, A novel image edge detection algorithm based on neutrosophic set, Pergamon Press, Inc, 40 (2014), 3-25.

[11]

Y. Guo and A. Sengür, A novel image segmentation algorithm based on neutrosophic similarity clustering, Applied Soft Computing, 25 (2014), 391-398.

[12]

Y. Guo, A. Sengür and J. Ye, A novel image thresholding algorithm based on neutrosophic similarity score, Measurement, 58 (2014), 175-186.

[13]

Y. Guo and A. Sengür, NECM: Neutrosophic evidential C-means clustering algorithm, Neural Computing & Applications, 26 (2014), 1-11.

[14]

Y. Guo and A. Sengür, NCM: Neutrosophic C-means clustering algorithm, Pattern Recognition, 48 (2015), 2710-2724.

[15]

Y. Guo and Y. Akbulut et al., An efficient image segmentation algorithm using neutrosophic graph cut, Symmetry, 9 (2017), 185.

[16]

K. Hanbay and M. F. Talu, Segmentation of SAR images using improved artificial bee colony algorithm and neutrosophic set, Applied Soft Computing Journal, 21 (2014), 433-443.

[17]

T. Kanungo, D. M. Mount and N. S. Netanyahu et al., An efficient k-means clustering algorithm: Analysis and implementation, IEEE Transactions on Pattern Analysis & Machine Intelligence, 24 (2002), 881-892.

[18]

X. Liu, The fuzzy theory based on AFS algebras and AFS structure, Journal of Mathematical Analysis & Applications, 217 (1998), 459-478. doi: 10.1006/jmaa.1997.5718.

[19]

S. K. Pal and R. A. King, Image enhancement using smoothing with fuzzy sets, IEEE Transactions on Systems Man & Cybernetics, 11 (1981), 494-501.

[20]

S. K. Pal and R. A. King, Image enhancement using fuzzy sets, Electronics Letters, 16 (1980), 376-378.

[21]

A. Sengur and Y. Guo, Color texture image segmentation based on neutrosophic set and wavelet transformation, Computer Vision & Image Understanding, 115 (2011), 1134-1144.

[22]

J. Shan, H. D. Cheng and Y. Wang, A novel segmentation method for breast ultrasound images based on neutrosophic k-means clustering, Medical Physics, 39 (2012), 5669.

[23]

F. Smarandache, A unifying field in logics: Neutrosophic logic, Multiple-Valued Logic, 8 (1999), 489-503.

[24]

F. Smarandache, A unifying field in logics: Neutrsophic logic, neutrosophy, neutrosophic set, neutrosophic probability (Fourth edition), University of New Mexico, 332 (2002), 5-21.

[25]

F. Smarandache, Neutrosophic Topologies, 1999.

[26]

Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets & Systems, 20 (1986), 191-210. doi: 10.1016/0165-0114(86)90077-1.

[27]

J. K. Udupa and S. Samarasekera, Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation, Academic Press Inc., 58 (1996), 246-261.

[28]

H. WangP. Madiraju and Y. Zhang et al, Interval neutrosophic sets, Mathematics, 1 (2004), 274-277.

[29]

L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

[30]

H. Zhang, J. Wang and X. Chen, Interval neutrosophic sets and their application in multicriteria decision making problems, The Scientific World Journal, 2014 (2014), 645953.

[31]

X. Zhao and S. T. Wang, Neutrosophic image segmentation approach based on similarity, Application Research of Computers, 29 (2012), 2371-2374.

Figure 1.  Lena1, Lena2, Pepper
Figure 2.  The first part is the original image, the middle part is the segmentation by the traditional k-means algorithms, and the third part is the segmentation by interval neutrosophic set method
Figure 3.  For Lena1 image, the first part is the original image with gaussian noise (mean is $ 0 $ and variance is $ 0.01 $), the middle part is the segmentation by the traditional k-means algorithms, and the third part is the segmentation by interval neutrosophic set method
Figure 4.  For Lena2 image, the first part is the original image with gaussian noise (mean is 0 and variance is 0.01), the middle part is the segmentation by the traditional k-means algorithms, and the third part is the segmentation by interval neutrosophic set method
Figure 5.  For Pepper image, the first part is the original image with gaussian noise (mean is $ 0 $ and variance is $ 0.01 $), the middle part is the segmentation by the traditional k-means algorithms, and the third part is the segmentation by interval neutrosophic set method
Figure 6.  For Lena image, the first part is the original image, the middle part is the segmentation by the approach in [9], and the third part is the segmentation by interval neutrosophic set method
Table 1.  The value of PSNR in different ranges for the three images ($ W = w\ast w $ is a collection of image pixels)
range $ w_{1}=3 $ $ w_{1}=3 $ $ w_{1}=3 $ $ w_{1}=3 $ $ w_{1}=3 $ $ w_{1}=3 $
$ w_{2}=3 $ $ w_{2}=4 $ $ w_{2}=5 $ $ w_{2}=6 $ $ w_{2}=7 $ $ w_{2}=8 $
Lena1 21.9715 22.1662 21.5974 21.9076 21.1507 21.6422
Lena2 22.8407 23.1224 22.5366 22.8503 22.3337 22.6582
Pepper 20.9797 21.4961 20.4562 20.8171 20.1147 20.4185
range $ w_{1}=3 $ $ w_{1}=3 $ $ w_{1}=3 $ $ w_{1}=3 $ $ w_{1}=3 $ $ w_{1}=3 $
$ w_{2}=3 $ $ w_{2}=4 $ $ w_{2}=5 $ $ w_{2}=6 $ $ w_{2}=7 $ $ w_{2}=8 $
Lena1 21.9715 22.1662 21.5974 21.9076 21.1507 21.6422
Lena2 22.8407 23.1224 22.5366 22.8503 22.3337 22.6582
Pepper 20.9797 21.4961 20.4562 20.8171 20.1147 20.4185
Table 2.  The value of PSNR for the three images with different noises
noise gaussian noise(1) gaussian noise(2) salt noise speckle noise
k-means 19.1443 13.8363 22.6033 19.5381
INI 21.2599 18.4293 21.1605 21.6448
k-means 19.1969 13.9415 23.3081 20.9689
INI 22.1729 18.6085 22.4192 22.6730
k-means 18.6936 13.8596 21.4768 19.4912
INI 20.6764 18.0361 20.7433 20.6611
noise gaussian noise(1) gaussian noise(2) salt noise speckle noise
k-means 19.1443 13.8363 22.6033 19.5381
INI 21.2599 18.4293 21.1605 21.6448
k-means 19.1969 13.9415 23.3081 20.9689
INI 22.1729 18.6085 22.4192 22.6730
k-means 18.6936 13.8596 21.4768 19.4912
INI 20.6764 18.0361 20.7433 20.6611
[1]

Sung Ha Kang, Berta Sandberg, Andy M. Yip. A regularized k-means and multiphase scale segmentation. Inverse Problems & Imaging, 2011, 5 (2) : 407-429. doi: 10.3934/ipi.2011.5.407

[2]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems & Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[3]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[4]

Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial & Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565

[5]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[6]

Shi Yan, Jun Liu, Haiyang Huang, Xue-Cheng Tai. A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation. Inverse Problems & Imaging, 2019, 13 (3) : 653-677. doi: 10.3934/ipi.2019030

[7]

Catalin Badea, Bernhard Beckermann, Michel Crouzeix. Intersections of several disks of the Riemann sphere as $K$-spectral sets. Communications on Pure & Applied Analysis, 2009, 8 (1) : 37-54. doi: 10.3934/cpaa.2009.8.37

[8]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[9]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[10]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[11]

Wenjuan Jia, Yingjie Deng, Chenyang Xin, Xiaodong Liu, Witold Pedrycz. A classification algorithm with Linear Discriminant Analysis and Axiomatic Fuzzy Sets. Mathematical Foundations of Computing, 2019, 2 (1) : 73-81. doi: 10.3934/mfc.2019006

[12]

Wan-Tong Li, Bin-Guo Wang. Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 589-611. doi: 10.3934/dcds.2009.24.589

[13]

Dominique Zosso, Jing An, James Stevick, Nicholas Takaki, Morgan Weiss, Liane S. Slaughter, Huan H. Cao, Paul S. Weiss, Andrea L. Bertozzi. Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems & Imaging, 2017, 11 (3) : 577-600. doi: 10.3934/ipi.2017027

[14]

Matthew S. Keegan, Berta Sandberg, Tony F. Chan. A multiphase logic framework for multichannel image segmentation. Inverse Problems & Imaging, 2012, 6 (1) : 95-110. doi: 10.3934/ipi.2012.6.95

[15]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[16]

Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems & Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293

[17]

Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems & Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099

[18]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[19]

S. Astels. Thickness measures for Cantor sets. Electronic Research Announcements, 1999, 5: 108-111.

[20]

Frank D. Grosshans, Jürgen Scheurle, Sebastian Walcher. Invariant sets forced by symmetry. Journal of Geometric Mechanics, 2012, 4 (3) : 271-296. doi: 10.3934/jgm.2012.4.271

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]