# American Institute of Mathematical Sciences

September  2019, 9(3): 257-267. doi: 10.3934/naco.2019017

## Bearing rigidity and formation stabilization for multiple rigid bodies in $SE(3)$

 1 Faculty of Science and Engineering, University of Groningen, 9747 Groningen, The Netherlands 2 Department of Control Science and Engineering, Harbin Institute of Technology, 150001, China

* Corresponding author: L. M. Chen

Received  April 2018 Revised  December 2018 Published  May 2019

Fund Project: The first author is supported by China Scholarship Council

In this work, we first distinguish different notions related to bearing rigidity in graph theory and then further investigate the formation stabilization problem for multiple rigid bodies. Different from many previous works on formation control using bearing rigidity, we do not require the use of a shared global coordinate system, which is enabled by extending bearing rigidity theory to multi-agent frameworks embedded in the three dimensional $special \; Euclidean \; group$ $SE(3)$ and expressing the needed bearing information in each agent's local coordinate system. Here, each agent is modeled by a rigid body with 3 DOFs in translation and 3 DOFs in rotation. One key step in our approach is to define the bearing rigidity matrix in $SE(3)$ and construct the necessary and sufficient conditions for infinitesimal bearing rigidity. In the end, a gradient-based bearing formation control algorithm is proposed to stabilize formations of multiple rigid bodies in $SE(3)$.

Citation: Liangming Chen, Ming Cao, Chuanjiang Li. Bearing rigidity and formation stabilization for multiple rigid bodies in $SE(3)$. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 257-267. doi: 10.3934/naco.2019017
##### References:

show all references

##### References:
Comparison of different definitions for bearing and bearing rigidity
 Definitions for bearing Measurement variable Rigidity Angle in 2D space $\theta_{ij}$ Parallel bearing rigidity Unit vector in a global frame $\frac{p_j-p_i}{||p_j-p_i||}$ Bearing rigidity in $\mathbb{R}^d$ Unit vector in $SE(2)$ $T(\theta_i)\frac{p_j-p_i}{||p_j-p_i||}$ Bearing rigidity in $SE(2)$
 Definitions for bearing Measurement variable Rigidity Angle in 2D space $\theta_{ij}$ Parallel bearing rigidity Unit vector in a global frame $\frac{p_j-p_i}{||p_j-p_i||}$ Bearing rigidity in $\mathbb{R}^d$ Unit vector in $SE(2)$ $T(\theta_i)\frac{p_j-p_i}{||p_j-p_i||}$ Bearing rigidity in $SE(2)$
 [1] Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009 [2] Yong Ren, Wensheng Yin. Quasi sure exponential stabilization of nonlinear systems via intermittent $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5871-5883. doi: 10.3934/dcdsb.2019110 [3] Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $\mathbb S^2$ and $\mathbb H^2$ are inclined. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020067 [4] Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059 [5] Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077 [6] Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001 [7] Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $\mathbb{T}^3$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116 [8] Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$\alpha$ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 [9] Ali Hyder, Juncheng Wei. Higher order conformally invariant equations in ${\mathbb R}^3$ with prescribed volume. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2757-2764. doi: 10.3934/cpaa.2019123 [10] Xingwu Chen, Jaume Llibre, Weinian Zhang. Cyclicity of $(1,3)$-switching FF type equilibria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6541-6552. doi: 10.3934/dcdsb.2019153 [11] Anas Eskif, Julio C. Rebelo. Global rigidity of conjugations for locally non-discrete subgroups of ${\rm {Diff}}^{\omega} (S^1)$. Journal of Modern Dynamics, 2019, 15: 41-93. doi: 10.3934/jmd.2019013 [12] Valeria Banica, Luis Vega. Singularity formation for the 1-D cubic NLS and the Schrödinger map on $\mathbb S^2$. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1317-1329. doi: 10.3934/cpaa.2018064 [13] Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137 [14] Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $\mathbb{R} ^{3}$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079 [15] Juan Dávila, Manuel Del Pino, Catalina Pesce, Juncheng Wei. Blow-up for the 3-dimensional axially symmetric harmonic map flow into $S^2$. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-31. doi: 10.3934/dcds.2019237 [16] Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007 [17] Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129 [18] Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011 [19] Pak Tung Ho. Prescribing the $Q'$-curvature in three dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096 [20] Ekta Mittal, Sunil Joshi. Note on a $k$-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 797-804. doi: 10.3934/dcdss.2020045

Impact Factor: