# American Institute of Mathematical Sciences

September  2018, 8(3): 337-350. doi: 10.3934/naco.2018022

## Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations

 1 Faculty of Science and Technology, Universiti Sains Islam Malaysia, Malaysia (USIM), Negeri Sembilan, Malaysia 2 Institute for Mathematical Research, Universiti Putra Malaysia (UPM), Malaysia

* Corresponding author: Zainidin Eshkuvatov

Received  April 2017 Revised  March 2018 Published  June 2018

TIn this note, we review homotopy perturbation method (HPM), Discrete HPM, Chebyshev polynomials and its properties. Moreover, the convergences of HPM and error term of Chebyshev polynomials were discussed. Then, linear singular integral equations (SIEs) and hyper-singular integral equations (HSIEs) are solved by combining modified HPM together with Chebyshev polynomials. Convergences of the mixed method for the linear HSIEs are also obtained. Finally, illustrative examples and comparisons with different methods are presented.

Citation: Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337-350. doi: 10.3934/naco.2018022
##### References:

show all references

##### References:
Comparisons with other methods
 $x$ Error term in [45] Error of HPM Error of MHPM in [28] -1 0 0 0 -0.5 $13*10^{-17}$ 0 0 0. 0 0 0 0.5 $7.8*10^{-18}$ 0 0 1 0 0 0
 $x$ Error term in [45] Error of HPM Error of MHPM in [28] -1 0 0 0 -0.5 $13*10^{-17}$ 0 0 0. 0 0 0 0.5 $7.8*10^{-18}$ 0 0 1 0 0 0
Comparisons with other methods
 $x$ Error term in [45] Error of MHPM [28] -1.0 0.0 0 -0.8 $2.1\cdot 10^{-10}$ 0 -0.4 $3.4\cdot 10^{-9}$ 0 0.0 $2.0\cdot 10^{-9}$ 0 0.4 $3.3\cdot 10^{-9}$ 0 0.8 $2.7\cdot 10^{-9}$ 0 1.0 0.0 0
 $x$ Error term in [45] Error of MHPM [28] -1.0 0.0 0 -0.8 $2.1\cdot 10^{-10}$ 0 -0.4 $3.4\cdot 10^{-9}$ 0 0.0 $2.0\cdot 10^{-9}$ 0 0.4 $3.3\cdot 10^{-9}$ 0 0.8 $2.7\cdot 10^{-9}$ 0 1.0 0.0 0
Error terms for different value of $n$
 $x$ Exact Solution Error MHPM for m=n=6 Error MHPM for m=n=10 -0.9999 0.14140368029 1.0851729 10?4 1.4040446 10?10 -0.901 3.94739842327 3.5501594 10?4 1.8203460 10?9 -0.436 5.75413468725 3.0648319 10?4 2.6221447 10?8 -0.015 5.03721659280 8.6784464 10?5 1.7385004 10?8 0.015 4.96222081226 1.9992451 10?5 1.8524990 10?8 0.436 3.69436233615 3.3916634 10?1 1.9700974 10?8 0.901 1.49541222584 1.2745747 10?4 1.3403888 10?8 0.9999 0.04714084491 3.3327100 10?5 3.5400390 10?10
 $x$ Exact Solution Error MHPM for m=n=6 Error MHPM for m=n=10 -0.9999 0.14140368029 1.0851729 10?4 1.4040446 10?10 -0.901 3.94739842327 3.5501594 10?4 1.8203460 10?9 -0.436 5.75413468725 3.0648319 10?4 2.6221447 10?8 -0.015 5.03721659280 8.6784464 10?5 1.7385004 10?8 0.015 4.96222081226 1.9992451 10?5 1.8524990 10?8 0.436 3.69436233615 3.3916634 10?1 1.9700974 10?8 0.901 1.49541222584 1.2745747 10?4 1.3403888 10?8 0.9999 0.04714084491 3.3327100 10?5 3.5400390 10?10
 [1] Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241 [2] Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241 [3] Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175 [4] Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491 [5] Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51 [6] Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 [7] Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039 [8] Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818 [9] Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355 [10] Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783 [11] Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883 [12] T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217 [13] Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017 [14] Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685 [15] Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807 [16] Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897 [17] Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009 [18] Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control & Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016 [19] Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141 [20] Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

Impact Factor: