# American Institute of Mathematical Sciences

June  2018, 8(2): 157-168. doi: 10.3934/naco.2018009

## A three echelon revenue oriented green supply chain network design

 Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

Received  April 2016 Revised  October 2017 Published  May 2018

Fund Project: The reviewing process of this paper was handled by Editors A. (Nima) Mirzazadeh, Kharazmi University, Tehran, Iran, and Gerhard-Wilhelm Weber, Middle East Technical University, Ankara, Turkey. This paper was for the occasion of the 12th International Conference on Industrial Engineering (ICIE 2016), which was held in Tehran, Iran during 25-26 January, 2016

Green supply chain network designing has been studied during last decades. As carbon emissions considered as a major index in today's activities around the world, here a three echelon-multi product network including manufacturer, distributor, retailer have been provided and tried to minimize the pollution gathered from manufacturing and distribution of products all over the chains which causes extra costs as penalty to the system.

As we faced with these penalties, the model determines selling prices of products for manufacturer and distribution center simultaneously by locating these centers in order to maximize the profits all around the network. Finally, the proposed model is solved through the numerical examples and the sensitivity analysis and important parameters are reported to find some management insights.

Citation: Ashkan Mohsenzadeh Ledari, Alireza Arshadi Khamseh, Mohammad Mohammadi. A three echelon revenue oriented green supply chain network design. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 157-168. doi: 10.3934/naco.2018009
##### References:

show all references

##### References:
A three echelon supply chain network
The impact of demands on selling price
The impact of carbon dioxid emissions on selling price
Data for numerical example
 $f_{j}$ Random between [200000, 300000] $a_{k}$ Random between [10000, 10100] $w_{i}^{k}$ Random between [1000, 2000] $c_{mk}$ Random between [1000, 1100] $\gamma _{mk}$ Random between [10000, 12000] $CO_{2}$ Random between [450000000, 500000000] $T_{mjk}$ Random between [500, 600] $v_{jk}$ Random between [200, 300] $R_{m}^{k}$ Random between [10000, 10100] $d_{ij}$ Random between [50, 60] $T_{jik}$ Random between [500, 600] $\alpha _{ji}$ Random between [400, 450] $d_{mj}$ Random between [50, 60] $b$ Random between [50000000, 60000000] $\alpha _{mj}$ Random between [400, 450] $P$ Random between [6000, 7000] $q_{j}$ Random between [10000000, 10100000] $l_{k}$ Random between [1000, 2000]
 $f_{j}$ Random between [200000, 300000] $a_{k}$ Random between [10000, 10100] $w_{i}^{k}$ Random between [1000, 2000] $c_{mk}$ Random between [1000, 1100] $\gamma _{mk}$ Random between [10000, 12000] $CO_{2}$ Random between [450000000, 500000000] $T_{mjk}$ Random between [500, 600] $v_{jk}$ Random between [200, 300] $R_{m}^{k}$ Random between [10000, 10100] $d_{ij}$ Random between [50, 60] $T_{jik}$ Random between [500, 600] $\alpha _{ji}$ Random between [400, 450] $d_{mj}$ Random between [50, 60] $b$ Random between [50000000, 60000000] $\alpha _{mj}$ Random between [400, 450] $P$ Random between [6000, 7000] $q_{j}$ Random between [10000000, 10100000] $l_{k}$ Random between [1000, 2000]
The decision variables value
 $X_{ijk}$ $\begin{array}{l} \begin{array}{ccccc} X_{111} {=\, \, \, \, \, 0\, \, \, \, }&{X_{112} =\, \, \, \, \, 0\, \, \, \, \, }&{X_{113} =1515}&{X_{114} =\, \, \, \, 0\, \, \, \, }&{X_{115} =\, \, \, \, 0\, \, \, \, } \\ {X_{121} =\, \, \, \, \, 0\, \, \, \, }&{X_{122} =1203}&{X_{123} =\, \, \, \, 0\, \, \, \, }&{X_{124} =1545}&{X_{125} =1907} \\ {X_{131} =\, 1657}&{X_{132} =\, \, \, \, 0\, \, \, \, }&{X_{133} =\, \, \, \, 0\, \, \, \, }&{X_{134} =\, \, \, \, 0\, \, \, \, }&{X_{135} =\, \, \, \, 0\, \, \, \, } \\ {X_{211} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{212} =\, \, \, \, 0\, \, \, \, }&{X_{213} =1069}&{X_{214} =\, \, \, \, 0\, \, \, \, }&{X_{215} =\, \, \, \, 0\, \, \, \, } \\ {X_{221} =1804}&{X_{222} =1983}&{X_{223} =\, \, \, \, 0\, \, \, \, }&{X_{224} =1196}&{X_{225} =1695} \\ {X_{311} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{312} =\, \, \, \, 0\, \, \, \, }&{X_{313} =1217}&{X_{314} =\, \, \, \, 0\, \, \, \, }&{X_{315} =\, \, \, \, 0\, \, \, \, } \\ {X_{321} =1639}&{X_{322} =1333}&{X_{323} =\, \, \, \, 0\, \, \, \, }&{X_{324} =1632}&{X_{325} =1012} \\ {X_{411} =1122}&{X_{412} =\, \, \, \, 0\, \, \, \, }&{X_{413} =1946}&{X_{414} =\, \, \, \, 0\, \, \, \, }&{X_{415} =\, \, \, \, 0\, \, \, \, } \\ {X_{421} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{422} =1687}&{X_{423} =\, \, \, \, 0\, \, \, \, }&{X_{424} =1709}&{X_{425} =1075} \\ {X_{511} =1510}&{X_{512} =\, \, \, \, 0\, \, \, \, }&{X_{513} =1196}&{X_{514} =\, \, \, \, 0\, \, \, \, }&{X_{515} =\, \, \, \, 0\, \, \, \, } \\ {X_{521} =\, \, \, \, 0\, \, \, \, \, \, \, }&{X_{522} =1510}&{X_{523} =\, \, \, \, 0\, \, \, \, }&{X_{524} =1273}&{X_{525} =1086}\end{array}\end{array}$ $\begin{array}{l}\\ \\ U_{mjk} \\ \\ \\ \\ \\ y_{j}\end{array}$ $\begin{array}{l} {U_{111} =9575} \\ {U_{121} =25289} \\ {U_{131} =1657} \\ \\{y_{1} =1} \\ {y_{2} =1} \\ {y_{3} =1}\end{array}$ Objective function $5.6*10^{11}$
 $X_{ijk}$ $\begin{array}{l} \begin{array}{ccccc} X_{111} {=\, \, \, \, \, 0\, \, \, \, }&{X_{112} =\, \, \, \, \, 0\, \, \, \, \, }&{X_{113} =1515}&{X_{114} =\, \, \, \, 0\, \, \, \, }&{X_{115} =\, \, \, \, 0\, \, \, \, } \\ {X_{121} =\, \, \, \, \, 0\, \, \, \, }&{X_{122} =1203}&{X_{123} =\, \, \, \, 0\, \, \, \, }&{X_{124} =1545}&{X_{125} =1907} \\ {X_{131} =\, 1657}&{X_{132} =\, \, \, \, 0\, \, \, \, }&{X_{133} =\, \, \, \, 0\, \, \, \, }&{X_{134} =\, \, \, \, 0\, \, \, \, }&{X_{135} =\, \, \, \, 0\, \, \, \, } \\ {X_{211} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{212} =\, \, \, \, 0\, \, \, \, }&{X_{213} =1069}&{X_{214} =\, \, \, \, 0\, \, \, \, }&{X_{215} =\, \, \, \, 0\, \, \, \, } \\ {X_{221} =1804}&{X_{222} =1983}&{X_{223} =\, \, \, \, 0\, \, \, \, }&{X_{224} =1196}&{X_{225} =1695} \\ {X_{311} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{312} =\, \, \, \, 0\, \, \, \, }&{X_{313} =1217}&{X_{314} =\, \, \, \, 0\, \, \, \, }&{X_{315} =\, \, \, \, 0\, \, \, \, } \\ {X_{321} =1639}&{X_{322} =1333}&{X_{323} =\, \, \, \, 0\, \, \, \, }&{X_{324} =1632}&{X_{325} =1012} \\ {X_{411} =1122}&{X_{412} =\, \, \, \, 0\, \, \, \, }&{X_{413} =1946}&{X_{414} =\, \, \, \, 0\, \, \, \, }&{X_{415} =\, \, \, \, 0\, \, \, \, } \\ {X_{421} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{422} =1687}&{X_{423} =\, \, \, \, 0\, \, \, \, }&{X_{424} =1709}&{X_{425} =1075} \\ {X_{511} =1510}&{X_{512} =\, \, \, \, 0\, \, \, \, }&{X_{513} =1196}&{X_{514} =\, \, \, \, 0\, \, \, \, }&{X_{515} =\, \, \, \, 0\, \, \, \, } \\ {X_{521} =\, \, \, \, 0\, \, \, \, \, \, \, }&{X_{522} =1510}&{X_{523} =\, \, \, \, 0\, \, \, \, }&{X_{524} =1273}&{X_{525} =1086}\end{array}\end{array}$ $\begin{array}{l}\\ \\ U_{mjk} \\ \\ \\ \\ \\ y_{j}\end{array}$ $\begin{array}{l} {U_{111} =9575} \\ {U_{121} =25289} \\ {U_{131} =1657} \\ \\{y_{1} =1} \\ {y_{2} =1} \\ {y_{3} =1}\end{array}$ Objective function $5.6*10^{11}$
The optimal value of binary decision variable and objective function
 Problem size(I*J*M*K) Optimal value of binary decision variable Objective function 5*5*5*5 $y_{j} =[11100]$ $5.6*10^{11}$ 15*15*15*15 $y_{j} =[110111111001111]$ $5.1*10^{12}$ 20*20*20*20 $y_{j} =[11110110101101101111]$ $9.2*10^{12}$ 25*25*25*25 $y_{j} =[1111011111001111101101011]$ $1.4*10^{13}$
 Problem size(I*J*M*K) Optimal value of binary decision variable Objective function 5*5*5*5 $y_{j} =[11100]$ $5.6*10^{11}$ 15*15*15*15 $y_{j} =[110111111001111]$ $5.1*10^{12}$ 20*20*20*20 $y_{j} =[11110110101101101111]$ $9.2*10^{12}$ 25*25*25*25 $y_{j} =[1111011111001111101101011]$ $1.4*10^{13}$
The optimal value of binary decision variable and objective function
 $S_{mk}$ $\begin{array}{ccccc} {S_{11} =9999999}&{S_{12} =1481632}&{S_{13} =1433065}&{S_{14} =1498182}&{S_{15} =1306987} \\ {S_{21} =6419183}&{S_{22} =1481632}&{S_{23} =1433066}&{S_{24} =1498182}&{S_{25} =1306987} \\ {S_{31} =6438095}&{S_{32} =1481632}&{S_{33} =1433065}&{S_{34} =1498182}&{S_{35} =1306987} \\ {S_{41} =6426776}&{S_{42} =1481633}&{S_{43} =1433065}&{S_{44} =1498182}&{S_{45} =1306988} \\ {S_{51} =6432022}&{S_{52} =1481632}&{S_{53} =1433065}&{S_{54} =1498182}&{S_{55} =1306987} \end{array}$ $U_{mjk}$ $\begin{array}{l} {U_{111} =9575} \\ {U_{121} =25289} \\ {U_{131} =1657} \end{array}$ $S_{jk}^{'}$ $\begin{array}{ccccc} {S'_{11} =9999999}&{S'_{12} =1825318}&{S'_{13} =9999999}&{S'_{14} =1904827}&{S'_{15} =1419765} \\ {S'_{21} =9999999}&{S'_{22} =9999999}&{S'_{23} =1444720}&{S'_{24} =9999999}&{S'_{25} =9999999} \\ {S'_{31} =9999999}&{S'_{32} =1493339}&{S'_{33} =1780413}&{S'_{34} =1509851}&{S'_{35} =1318645} \\ {S'_{41} =9999999}&{S'_{42} =1493334}&{S'_{43} =1444775}&{S'_{44} =1509885}&{S'_{45} =1318716} \\ {S'_{51} =9999999}&{S'_{52} =1493334}&{S'_{53} =1444775}&{S'_{54} =1509885}&{S'_{55} =1318716} \end{array}$ $y_{j}$ $\begin{array}{l} {y_{1} =1} \\ {y_{2} =1} \\ {y_{3} =1} \end{array}$ $X_{ijk}$ $\begin{array}{ccccc} {X_{111} =\, \, \, \, \, 0\, \, \, \, }&{X_{112} =\, \, \, \, \, 0\, \, \, \, \, }&{X_{113} =1515}&{X_{114} =\, \, \, \, 0\, \, \, \, }&{X_{115} =\, \, \, \, 0\, \, \, \, } \\ {X_{121} =\, \, \, \, \, 0\, \, \, \, }&{X_{122} =1203}&{X_{123} =\, \, \, \, 0\, \, \, \, }&{X_{124} =1545}&{X_{125} =1907} \\ {X_{131} =\, 1657}&{X_{132} =\, \, \, \, 0\, \, \, \, }&{X_{133} =\, \, \, \, 0\, \, \, \, }&{X_{134} =\, \, \, \, 0\, \, \, \, }&{X_{135} =\, \, \, \, 0\, \, \, \, } \\ {X_{211} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{212} =\, \, \, \, 0\, \, \, \, }&{X_{213} =1069}&{X_{214} =\, \, \, \, 0\, \, \, \, }&{X_{215} =\, \, \, \, 0\, \, \, \, } \\ {X_{221} =1804}&{X_{222} =1983}&{X_{223} =\, \, \, \, 0\, \, \, \, }&{X_{224} =1196}&{X_{225} =1695} \\ {X_{311} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{312} =\, \, \, \, 0\, \, \, \, }&{X_{313} =1217}&{X_{314} =\, \, \, \, 0\, \, \, \, }&{X_{315} =\, \, \, \, 0\, \, \, \, } \\ {X_{321} =1639}&{X_{322} =1333}&{X_{323} =\, \, \, \, 0\, \, \, \, }&{X_{324} =1632}&{X_{325} =1012} \\ {X_{411} =1122}&{X_{412} =\, \, \, \, 0\, \, \, \, }&{X_{413} =1946}&{X_{414} =\, \, \, \, 0\, \, \, \, }&{X_{415} =\, \, \, \, 0\, \, \, \, } \\ {X_{421} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{422} =1687}&{X_{423} =\, \, \, \, 0\, \, \, \, }&{X_{424} =1709}&{X_{425} =1075} \\ {X_{511} =1510}&{X_{512} =\, \, \, \, 0\, \, \, \, }&{X_{513} =1196}&{X_{514} =\, \, \, \, 0\, \, \, \, }&{X_{515} =\, \, \, \, 0\, \, \, \, } \\ {X_{521} =\, \, \, \, 0\, \, \, \, \, \, \, }&{X_{522} =1510}&{X_{523} =\, \, \, \, 0\, \, \, \, }&{X_{524} =1273}&{X_{525} =1086} \end{array}$ $g_{mjk}^{'}$ $\begin{array}{l} {g'_{111} ={\rm 95749990434}} \\ {g'_{121} ={\rm 95749990434}} \\ {g'_{131} ={\rm 16569998344}} \end{array}$ $g_{ijk}$ $\begin{array}{ccccc} {g_{111} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{112} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{113} ={\rm 15149998486}}&{g_{114} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{115} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{121} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{122} ={\rm 12029998798}}&{g_{123} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{124} ={\rm 15449998456}}&{g_{125} ={\rm 19069998094}} \\ {g_{131} =\, {\rm 16569998344}}&{g_{132} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{133} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{134} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{135} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{211} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{212} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{213} ={\rm 10689998932}}&{g_{214} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{215} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{221} ={\rm 18039998197}}&{g_{222} ={\rm 19829998018}}&{g_{223} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{224} ={\rm 11959998805}}&{g_{225} ={\rm 16949998306}} \\ {g_{311} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{312} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{313} ={\rm 12169998784}}&{g_{314} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{315} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{321} ={\rm 16389998362}}&{g_{322} ={\rm 13329998668}}&{g_{323} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{324} ={\rm 16319998369}}&{g_{325} ={\rm 10119998989}} \\ {g_{411} ={\rm 11219998879}}&{g_{412} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{413} ={\rm 19459998055}}&{g_{414} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{415} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{421} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{422} ={\rm 16869998314}}&{g_{423} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{424} ={\rm 17089998292}}&{g_{425} ={\rm 10749998926}} \\ {g_{511} ={\rm 15099998491}}&{g_{512} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{513} ={\rm 11959998805}}&{g_{514} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{515} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{521} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{522} ={\rm 15099998491}}&{\, g_{523} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{\, \, g_{524} ={\rm 12729998728}}&{g_{525} ={\rm 10859998915}} \end{array}$ Objective function $5.6*10^{11}$
 $S_{mk}$ $\begin{array}{ccccc} {S_{11} =9999999}&{S_{12} =1481632}&{S_{13} =1433065}&{S_{14} =1498182}&{S_{15} =1306987} \\ {S_{21} =6419183}&{S_{22} =1481632}&{S_{23} =1433066}&{S_{24} =1498182}&{S_{25} =1306987} \\ {S_{31} =6438095}&{S_{32} =1481632}&{S_{33} =1433065}&{S_{34} =1498182}&{S_{35} =1306987} \\ {S_{41} =6426776}&{S_{42} =1481633}&{S_{43} =1433065}&{S_{44} =1498182}&{S_{45} =1306988} \\ {S_{51} =6432022}&{S_{52} =1481632}&{S_{53} =1433065}&{S_{54} =1498182}&{S_{55} =1306987} \end{array}$ $U_{mjk}$ $\begin{array}{l} {U_{111} =9575} \\ {U_{121} =25289} \\ {U_{131} =1657} \end{array}$ $S_{jk}^{'}$ $\begin{array}{ccccc} {S'_{11} =9999999}&{S'_{12} =1825318}&{S'_{13} =9999999}&{S'_{14} =1904827}&{S'_{15} =1419765} \\ {S'_{21} =9999999}&{S'_{22} =9999999}&{S'_{23} =1444720}&{S'_{24} =9999999}&{S'_{25} =9999999} \\ {S'_{31} =9999999}&{S'_{32} =1493339}&{S'_{33} =1780413}&{S'_{34} =1509851}&{S'_{35} =1318645} \\ {S'_{41} =9999999}&{S'_{42} =1493334}&{S'_{43} =1444775}&{S'_{44} =1509885}&{S'_{45} =1318716} \\ {S'_{51} =9999999}&{S'_{52} =1493334}&{S'_{53} =1444775}&{S'_{54} =1509885}&{S'_{55} =1318716} \end{array}$ $y_{j}$ $\begin{array}{l} {y_{1} =1} \\ {y_{2} =1} \\ {y_{3} =1} \end{array}$ $X_{ijk}$ $\begin{array}{ccccc} {X_{111} =\, \, \, \, \, 0\, \, \, \, }&{X_{112} =\, \, \, \, \, 0\, \, \, \, \, }&{X_{113} =1515}&{X_{114} =\, \, \, \, 0\, \, \, \, }&{X_{115} =\, \, \, \, 0\, \, \, \, } \\ {X_{121} =\, \, \, \, \, 0\, \, \, \, }&{X_{122} =1203}&{X_{123} =\, \, \, \, 0\, \, \, \, }&{X_{124} =1545}&{X_{125} =1907} \\ {X_{131} =\, 1657}&{X_{132} =\, \, \, \, 0\, \, \, \, }&{X_{133} =\, \, \, \, 0\, \, \, \, }&{X_{134} =\, \, \, \, 0\, \, \, \, }&{X_{135} =\, \, \, \, 0\, \, \, \, } \\ {X_{211} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{212} =\, \, \, \, 0\, \, \, \, }&{X_{213} =1069}&{X_{214} =\, \, \, \, 0\, \, \, \, }&{X_{215} =\, \, \, \, 0\, \, \, \, } \\ {X_{221} =1804}&{X_{222} =1983}&{X_{223} =\, \, \, \, 0\, \, \, \, }&{X_{224} =1196}&{X_{225} =1695} \\ {X_{311} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{312} =\, \, \, \, 0\, \, \, \, }&{X_{313} =1217}&{X_{314} =\, \, \, \, 0\, \, \, \, }&{X_{315} =\, \, \, \, 0\, \, \, \, } \\ {X_{321} =1639}&{X_{322} =1333}&{X_{323} =\, \, \, \, 0\, \, \, \, }&{X_{324} =1632}&{X_{325} =1012} \\ {X_{411} =1122}&{X_{412} =\, \, \, \, 0\, \, \, \, }&{X_{413} =1946}&{X_{414} =\, \, \, \, 0\, \, \, \, }&{X_{415} =\, \, \, \, 0\, \, \, \, } \\ {X_{421} =\, \, \, \, \, 0\, \, \, \, \, \, }&{X_{422} =1687}&{X_{423} =\, \, \, \, 0\, \, \, \, }&{X_{424} =1709}&{X_{425} =1075} \\ {X_{511} =1510}&{X_{512} =\, \, \, \, 0\, \, \, \, }&{X_{513} =1196}&{X_{514} =\, \, \, \, 0\, \, \, \, }&{X_{515} =\, \, \, \, 0\, \, \, \, } \\ {X_{521} =\, \, \, \, 0\, \, \, \, \, \, \, }&{X_{522} =1510}&{X_{523} =\, \, \, \, 0\, \, \, \, }&{X_{524} =1273}&{X_{525} =1086} \end{array}$ $g_{mjk}^{'}$ $\begin{array}{l} {g'_{111} ={\rm 95749990434}} \\ {g'_{121} ={\rm 95749990434}} \\ {g'_{131} ={\rm 16569998344}} \end{array}$ $g_{ijk}$ $\begin{array}{ccccc} {g_{111} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{112} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{113} ={\rm 15149998486}}&{g_{114} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{115} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{121} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{122} ={\rm 12029998798}}&{g_{123} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{124} ={\rm 15449998456}}&{g_{125} ={\rm 19069998094}} \\ {g_{131} =\, {\rm 16569998344}}&{g_{132} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{133} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{134} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{135} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{211} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{212} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{213} ={\rm 10689998932}}&{g_{214} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{215} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{221} ={\rm 18039998197}}&{g_{222} ={\rm 19829998018}}&{g_{223} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{224} ={\rm 11959998805}}&{g_{225} ={\rm 16949998306}} \\ {g_{311} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{312} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{313} ={\rm 12169998784}}&{g_{314} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{315} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{321} ={\rm 16389998362}}&{g_{322} ={\rm 13329998668}}&{g_{323} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{324} ={\rm 16319998369}}&{g_{325} ={\rm 10119998989}} \\ {g_{411} ={\rm 11219998879}}&{g_{412} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{413} ={\rm 19459998055}}&{g_{414} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{415} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{421} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{422} ={\rm 16869998314}}&{g_{423} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{424} ={\rm 17089998292}}&{g_{425} ={\rm 10749998926}} \\ {g_{511} ={\rm 15099998491}}&{g_{512} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{513} ={\rm 11959998805}}&{g_{514} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{515} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, } \\ {g_{521} =\, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{g_{522} ={\rm 15099998491}}&{\, g_{523} =\, \, \, \, \, \, \, \, \, \, \, \, \, \, 0\, \, \, \, \, \, \, \, \, \, \, \, \, \, }&{\, \, g_{524} ={\rm 12729998728}}&{g_{525} ={\rm 10859998915}} \end{array}$ Objective function $5.6*10^{11}$
 [1] Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339 [2] Maryam Esmaeili, Samane Sedehzade. Designing a hub location and pricing network in a competitive environment. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2018172 [3] Sandeep Dulluri, N. R. Srinivasa Raghavan. Revenue management via multi-product available to promise. Journal of Industrial & Management Optimization, 2007, 3 (3) : 457-479. doi: 10.3934/jimo.2007.3.457 [4] Gang Xie, Wuyi Yue, Shouyang Wang. Optimal selection of cleaner products in a green supply chain with risk aversion. Journal of Industrial & Management Optimization, 2015, 11 (2) : 515-528. doi: 10.3934/jimo.2015.11.515 [5] Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727 [6] Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074 [7] Qingguo Bai, Fanwen Meng. Impact of risk aversion on two-echelon supply chain systems with carbon emission reduction constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2019037 [8] Jingming Pan, Wenqing Shi, Xiaowo Tang. Pricing and ordering strategies of supply chain with selling gift cards. Journal of Industrial & Management Optimization, 2018, 14 (1) : 349-369. doi: 10.3934/jimo.2017050 [9] Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007 [10] Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial & Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046 [11] Ata Allah Taleizadeh, Biswajit Sarkar, Mohammad Hasani. Delayed payment policy in multi-product single-machine economic production quantity model with repair failure and partial backordering. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-24. doi: 10.3934/jimo.2019002 [12] Bin Dan, Huali Gao, Yang Zhang, Ru Liu, Songxuan Ma. Integrated order acceptance and scheduling decision making in product service supply chain with hard time windows constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 165-182. doi: 10.3934/jimo.2017041 [13] Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337 [14] Xiaohong Chen, Kui Li, Fuqiang Wang, Xihua Li. Optimal production, pricing and government subsidy policies for a closed loop supply chain with uncertain returns. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2019008 [15] Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769 [16] Robert Ebihart Msigwa, Yue Lu, Xiantao Xiao, Liwei Zhang. A perturbation-based approach for continuous network design problem with emissions. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 135-149. doi: 10.3934/naco.2015.5.135 [17] Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial & Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039 [18] Qiong Liu, Ahmad Reza Rezaei, Kuan Yew Wong, Mohammad Mahdi Azami. Integrated modeling and optimization of material flow and financial flow of supply chain network considering financial ratios. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 113-132. doi: 10.3934/naco.2019009 [19] Ming-Jong Yao, Tien-Cheng Hsu. An efficient search algorithm for obtaining the optimal replenishment strategies in multi-stage just-in-time supply chain systems. Journal of Industrial & Management Optimization, 2009, 5 (1) : 11-32. doi: 10.3934/jimo.2009.5.11 [20] Kar Hung Wong, Yu Chung Eugene Lee, Heung Wing Joseph Lee, Chi Kin Chan. Optimal production schedule in a single-supplier multi-manufacturer supply chain involving time delays in both levels. Journal of Industrial & Management Optimization, 2018, 14 (3) : 877-894. doi: 10.3934/jimo.2017080

Impact Factor: