September  2017, 7(3): 345-357. doi: 10.3934/naco.2017022

A type of new consensus protocol for two-dimension multi-agent systems

Institute of Automation, Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

* Corresponding author: Zhang Yibo

The reviewing process of the paper was handled by Nanjing Huang as Guest Editors

Received  January 2016 Revised  June 2017 Published  July 2017

Fund Project: This work is supported by the National Natural Science Foundation of China (No. 61374083,61473264), Zhejiang Province Key Project of Science and Technology(No. 2014C03027), and Zhejiang Provincial Natural Science Foundation of China (No. LZ17F030002, LY17F030024)

A type of new consensus protocol for a two-dimension multi-agent system (MAS) is proposed. By introducing the conventional MAS and protocol, a dynamic equation of the first-order two-dimension MAS is proposed. then a new protocol with its Laplacian matrix is adopted. According to two types possible roots of character equations, two lemmas are proposed to show consensus asymptotical conditions. Furthermore, the convergence conditions of parameters are analyzed. Several simulated examples illustrate that consensus is achieved if the convergence conditions are satisfied.

Citation: Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022
References:
[1]

Y. Y. Chen and Y. P. Tian, Directed coordinated control for multi-agent formation motion onaset of given curves, Acta Automatica Sinica, 35 (2009), 1541-1549. doi: 10.3724/SP.J.1004.2009.01541.

[2]

H. HuangC. B. Yu and Q. H. Wu, Autonomous scale control of multi-agent formations with only shape constraints, International Journal of Robust and Nonlinear Control, 23 (2013), 765-791. doi: 10.1002/rnc.2800.

[3]

A. JadbabaieJ. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, Proceedings of the 41st IEEE Conference on Decision and Control,, 48 (2003), 2953-2958. doi: 10.1109/CDC.2003.812781.

[4]

Z. K. LiX. D. LiuW. Ren and L. H. Xie, Distributed tracking control for linear multi-agent systems with a leader of bounded unknown input, IEEE Transactions on Automatic Control, 58 (2013), 518-523. doi: 10.1109/TAC.2012.2208295.

[5]

Z. Y. LinL. L. WangZ. M. Han and M. Y. Fu, Distributed formation control of multi-Agent systems using complex Laplacian, IEEE Transactions on Automatic Control, 59 (2014), 1765-1777. doi: 10.1109/TAC.2014.2309031.

[6]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensus ability of linear multi-agent systems, IEEE Transactions on Automatic Control, 55 (2010), 1263-1268. doi: 10.1109/TAC.2010.2042764.

[7]

W. Ren and E. Atkins, Distributed multi-vehicle coordinated control via local information exchange, International Journal of Robust and Nonlinear Control, 17 (2007), 1002-1033. doi: 10.1002/rnc.1147.

[8]

W. Yu and Y. F. Zheng, Dynamic behavior of multi-agent systems with distributed sampled control, Acta Automatica Sinica, 38 (2012), 357-365. doi: 10.3724/SP.J.1004.2012.00357.

show all references

References:
[1]

Y. Y. Chen and Y. P. Tian, Directed coordinated control for multi-agent formation motion onaset of given curves, Acta Automatica Sinica, 35 (2009), 1541-1549. doi: 10.3724/SP.J.1004.2009.01541.

[2]

H. HuangC. B. Yu and Q. H. Wu, Autonomous scale control of multi-agent formations with only shape constraints, International Journal of Robust and Nonlinear Control, 23 (2013), 765-791. doi: 10.1002/rnc.2800.

[3]

A. JadbabaieJ. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, Proceedings of the 41st IEEE Conference on Decision and Control,, 48 (2003), 2953-2958. doi: 10.1109/CDC.2003.812781.

[4]

Z. K. LiX. D. LiuW. Ren and L. H. Xie, Distributed tracking control for linear multi-agent systems with a leader of bounded unknown input, IEEE Transactions on Automatic Control, 58 (2013), 518-523. doi: 10.1109/TAC.2012.2208295.

[5]

Z. Y. LinL. L. WangZ. M. Han and M. Y. Fu, Distributed formation control of multi-Agent systems using complex Laplacian, IEEE Transactions on Automatic Control, 59 (2014), 1765-1777. doi: 10.1109/TAC.2014.2309031.

[6]

C. Q. Ma and J. F. Zhang, Necessary and sufficient conditions for consensus ability of linear multi-agent systems, IEEE Transactions on Automatic Control, 55 (2010), 1263-1268. doi: 10.1109/TAC.2010.2042764.

[7]

W. Ren and E. Atkins, Distributed multi-vehicle coordinated control via local information exchange, International Journal of Robust and Nonlinear Control, 17 (2007), 1002-1033. doi: 10.1002/rnc.1147.

[8]

W. Yu and Y. F. Zheng, Dynamic behavior of multi-agent systems with distributed sampled control, Acta Automatica Sinica, 38 (2012), 357-365. doi: 10.3724/SP.J.1004.2012.00357.

Figure 1.  All possible of multiple results of $\bar{\mu} _{i\pm }$
Figure 2.  A digraph without leaders
Figure 3.  Simulation results 1 of condition (1) in Lemma 1
Figure 4.  Simulation results 2 of condition (1) in Lemma 1
Figure 5.  Simulation results 1 of condition (2) in Lemma 1
Figure 6.  Simulation results 2 of condition (2) in Lemma 1
Figure 7.  Simulation results 2 of condition (3) in Lemma 1
Figure 8.  Simulation results of condition (3) in Lemma 1
Figure 9.  Simulation results of condition (3) in Lemma 1
Figure 10.  Simulation results 1 of condition (1) in Lemma 2
Figure 11.  Simulation results 2 of condition (1) in Lemma 2
Figure 12.  Simulation results 1 of condition (2) in Lemma 2
Figure 13.  Simulation results 1 of condition (2) in Lemma 2
Figure 14.  Simulation results if Lemma 1 is not hold
Figure 15.  Simulation results if Lemma 2 is not hold
[1]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[2]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[3]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[4]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[5]

Mohammed Al Horani, Angelo Favini. First-order inverse evolution equations. Evolution Equations & Control Theory, 2014, 3 (3) : 355-361. doi: 10.3934/eect.2014.3.355

[6]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[7]

Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1623-1639. doi: 10.3934/dcds.2014.34.1623

[8]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[9]

Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations & Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028

[10]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[11]

Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065

[12]

Ansgar Jüngel, Ingrid Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 861-877. doi: 10.3934/dcdsb.2007.8.861

[13]

Xiaoling Guo, Zhibin Deng, Shu-Cherng Fang, Wenxun Xing. Quadratic optimization over one first-order cone. Journal of Industrial & Management Optimization, 2014, 10 (3) : 945-963. doi: 10.3934/jimo.2014.10.945

[14]

Pierre Fabrie, Alain Miranville. Exponential attractors for nonautonomous first-order evolution equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 225-240. doi: 10.3934/dcds.1998.4.225

[15]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[16]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[17]

Simone Fiori. Synchronization of first-order autonomous oscillators on Riemannian manifolds. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1725-1741. doi: 10.3934/dcdsb.2018233

[18]

Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106

[19]

Gábor Kiss, Bernd Krauskopf. Stability implications of delay distribution for first-order and second-order systems. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 327-345. doi: 10.3934/dcdsb.2010.13.327

[20]

Emmanuel N. Barron, Rafal Goebel, Robert R. Jensen. The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1693-1706. doi: 10.3934/dcdsb.2012.17.1693

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (22)
  • Cited by (0)

Other articles
by authors

[Back to Top]