# American Institute of Mathematical Sciences

June  2017, 7(2): 211-221. doi: 10.3934/naco.2017015

## Global optimization reduction of generalized Malfatti's problem

 1 Institute of Mathematics, National University of Mongolia, 210646, Ulaanbaatar, Mongolia 2 Matrosov Institute for Systems Dynamics and Control Theory SB RAS, 664033, Irkutsk, Russia

* Corresponding author: R.Enkhbat

Received  December 2016 Revised  May 2017 Published  June 2017

Fund Project: This paper was prepared at the occasion of The 10th International Conference on Optimization: Techniques and Applications (ICOTA 2016), Ulaanbaatar, Mongolia, July 23-26,2016, with its Associate Editors of Numerical Algebra, Control and Optimization (NACO) being Prof. Dr. Zhiyou Wu, School of Mathematical Sciences, Chongqing Normal University, Chongqing, China, Prof. Dr. Changjun Yu, Department of Mathematics and Statistics, Curtin University, Perth, Australia, and Shanghai University, China, and Prof. Gerhard-Wilhelm Weber, Middle East Technical University, Ankara, Turkey

In this paper, we generalize Malfatti's problem as a continuation of works [6,7]. The problem has been formulated as a global optimization problem. To solve Malfatti's problem numerically, we propose the co-called ''Hill method'' which is based on a heuristic approach. Some computational results for two and three-dimensional test problems are provided.

Citation: Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015
##### References:

show all references

##### References:
Three, four, and five circles inscribed in the set $D$ of Test 1
Circles for $K=3$ and $K=5$ for test problem 2
Circles placed into the test polygon 3 for $K=3, 5$
Spheres placed into polyhedron for $K=3$ and $K=5$
Spheres placed into test polyhedron 5
Test Problem 1 for $K=3$
 $x^*_1$ $x^*_2$ $r^*$ 1.9011 -0.2129 3.6336 6.7104 -0.0751 1.1775 0.4961 -4.5530 0.9282
 $x^*_1$ $x^*_2$ $r^*$ 1.9011 -0.2129 3.6336 6.7104 -0.0751 1.1775 0.4961 -4.5530 0.9282
Test Problem 1 for $K=4$
 $x^*_1$ $x^*_2$ $r^*$ 1.9609 -0.2849 3.6675 6.7807 -0.0898 1.1563 0.4795 -4.6023 0.8969 0.3978 3.8828 0.7834
 $x^*_1$ $x^*_2$ $r^*$ 1.9609 -0.2849 3.6675 6.7807 -0.0898 1.1563 0.4795 -4.6023 0.8969 0.3978 3.8828 0.7834
Test Problem 1 for $K=5$
 $x^*_1$ $x^*_2$ $r^*$ 1.9607 -0.2849 3.6677 6.7799 -0.0899 1.1567 0.4796 -4.6020 0.8972 0.3973 3.8822 0.7841 -0.3701 -3.6201 0.4016
 $x^*_1$ $x^*_2$ $r^*$ 1.9607 -0.2849 3.6677 6.7799 -0.0899 1.1567 0.4796 -4.6020 0.8972 0.3973 3.8822 0.7841 -0.3701 -3.6201 0.4016
Test Problem 2 for $K=3, 4, 5$
 K $x^*_1$ $x^*_2$ $r^*$ 1 1.2601 3.4685 3.4685 2 5.4923 1.2905 1.2905 3 -2.475 1.0056 1.0056 4 5.2051 3.0559 0.4981 5 3.8888 0.4980 0.4981
 K $x^*_1$ $x^*_2$ $r^*$ 1 1.2601 3.4685 3.4685 2 5.4923 1.2905 1.2905 3 -2.475 1.0056 1.0056 4 5.2051 3.0559 0.4981 5 3.8888 0.4980 0.4981
Test Problem 3 for $K=3, 4, 5$
 $x^*_1$ $x^*_2$ $r^*$ 0.7187 3.8509 3.8509 5.7749 1.6597 1.6597 -3.8282 1.3422 1.3422 5.2807 3.9803 0.7129 7.7998 0.6176 0.6176
 $x^*_1$ $x^*_2$ $r^*$ 0.7187 3.8509 3.8509 5.7749 1.6597 1.6597 -3.8282 1.3422 1.3422 5.2807 3.9803 0.7129 7.7998 0.6176 0.6176
 [1] Rentsen Enkhbat, M. V. Barkova, A. S. Strekalovsky. Solving Malfatti's high dimensional problem by global optimization. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 153-160. doi: 10.3934/naco.2016005 [2] Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 881-892. doi: 10.3934/jimo.2009.5.881 [3] Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483 [4] Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789 [5] Gaoxi Li, Zhongping Wan, Jia-wei Chen, Xiaoke Zhao. Necessary optimality condition for trilevel optimization problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018140 [6] Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67 [7] Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089 [8] Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1 [9] Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089 [10] Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $E$-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019089 [11] Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177 [12] Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 19-29. doi: 10.3934/naco.2012.2.19 [13] Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 [14] Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027 [15] Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235 [16] Dariusz Idczak, Stanisław Walczak. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2281-2292. doi: 10.3934/dcdsb.2019095 [17] B. Bonnard, J.-B. Caillau, E. Trélat. Second order optimality conditions with applications. Conference Publications, 2007, 2007 (Special) : 145-154. doi: 10.3934/proc.2007.2007.145 [18] Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069 [19] Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Optimality of (s, S) policies with nonlinear processes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 161-185. doi: 10.3934/dcdsb.2017008 [20] Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215

Impact Factor: