• Previous Article
    A new convergence proof of augmented Lagrangian-based method with full Jacobian decomposition for structured variational inequalities
  • NACO Home
  • This Issue
  • Next Article
    Optimal layer reinsurance on the maximization of the adjustment coefficient
2016, 6(1): 35-44. doi: 10.3934/naco.2016.6.35

Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps

1. 

Institute of Applied Mathematics, Beifang University of Nationalities, Yinchuan 750021

Received  March 2015 Revised  January 2016 Published  January 2016

This paper deals with the characteristics of global proper efficient points and the optimality conditions of vector optimization problems involving generalized convex set-valued maps. Several equivalent properties of global proper efficient points are proposed. Utilizing cone-directed contingent derivative, it presents the unified necessary and sufficient optimality conditions for global proper efficient element in vector optimization problem with cone-arcwise connected set-valued mapping.
Citation: Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35
References:
[1]

M. Avriel and I. Zang, Generalized arcwise-connected functions and characterizations of local-global minimum properties,, Journal of Optimization Theory and Applications, 32 (1980), 407. doi: 10.1007/BF00934030. Google Scholar

[2]

J. Baier and J. Jahn, On subdifferentials of set-valued maps,, Journal of Optimization Theory and Applications, 100 (1980), 233. doi: 10.1023/A:1021733402240. Google Scholar

[3]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, Journal of Mathematical Analysis and Applications, 71 (1979), 232. doi: 10.1016/0022-247X(79)90226-9. Google Scholar

[4]

J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimiation,, Transactions of the American Mathematical Society, 338 (1993), 105. doi: 10.2307/2154446. Google Scholar

[5]

Y. H. Cheng and W. T. Fu, Strong efficiency in a locally convex space,, Mathematical Methods of Operations Research, 50 (1999), 373. doi: 10.1007/s001860050076. Google Scholar

[6]

H. W. Corley, Optimality conditions for maximizations of set-valued functions,, Journal of Optimization Theory and Applications, 58 (1988), 1. doi: 10.1007/BF00939767. Google Scholar

[7]

C. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization,, Journal of Optimization Theory and Applications, 67 (1990), 297. doi: 10.1007/BF00940478. Google Scholar

[8]

X. H. Gong, H. B. Dong and S. Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization,, Journal of Mathematical Analysis and Applications, 284 (2003), 332. doi: 10.1016/S0022-247X(03)00360-3. Google Scholar

[9]

X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior,, Journal of Mathematical Analysis and Applications, 307 (2005), 12. doi: 10.1016/j.jmaa.2004.10.001. Google Scholar

[10]

M. I. Henig, An improved definition of proper efficiency for vector maximization with respect to cones,, Journal of Optimization Theory and Applications, 94 (1997), 469. Google Scholar

[11]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimzation,, Mathematical Methods of Operation Research, 46 (1997), 193. doi: 10.1007/BF01217690. Google Scholar

[12]

C. S. Lalitha, J. Dutta and M. G. Govll, Optimality criteria in set-valued optimization,, ournal of the Australian mathematical society, 75 (2003), 221. doi: 10.1017/S1446788700003736. Google Scholar

[13]

D. T. Luc., Contingent derivatives of set-valued maps and applications to vector optimization,, Mathematical Programming, 50 (1991), 99. doi: 10.1007/BF01594928. Google Scholar

[14]

X. Q. Yang, Directional derivatives for set-valued mappings and applications,, Mathematical Methods of Operations Research, 48 (1998), 273. doi: 10.1007/s001860050028. Google Scholar

[15]

Guolin Yu, Directional derivatives and generalized cone-preinvex set-valued optimizaiton,, Acta Mathematica Sinica, 54 (2011), 875. Google Scholar

[16]

Guolin Yu and Sanyang Liu, Globally proper saddle point in ic-cone-convexlike set-valued optimization problems,, Act Mathematica Sinica (English Series), 25 (2009), 1921. doi: 10.1007/s10114-009-6144-9. Google Scholar

[17]

Guolin Yu and Sanyang Liu, Optimality conditions of globally proper efficient solutions for set-valued optimization problem,, Acta Mathematicae Applicatae Sinica(in Chinese), 33 (2010), 150. Google Scholar

[18]

Guolin Yu, Henig globally efficiency for set-valued optimization and vector variational inequality,, Journal of Systems Science & Complexity, 27 (2014), 338. doi: 10.1007/s11424-014-1215-0. Google Scholar

[19]

Guolin Yu, Topological properties of Henig globally efficient solutions of set-valued optimization problems,, Numerical Algebra, 4 (2014), 309. doi: 10.3934/naco.2014.4.309. Google Scholar

[20]

X. Y. Zheng, Proper efficiency in locally convex topological vector spaces,, Journal of Optimization Theory and Applications, 36 (1982), 387. Google Scholar

show all references

References:
[1]

M. Avriel and I. Zang, Generalized arcwise-connected functions and characterizations of local-global minimum properties,, Journal of Optimization Theory and Applications, 32 (1980), 407. doi: 10.1007/BF00934030. Google Scholar

[2]

J. Baier and J. Jahn, On subdifferentials of set-valued maps,, Journal of Optimization Theory and Applications, 100 (1980), 233. doi: 10.1023/A:1021733402240. Google Scholar

[3]

H. P. Benson, An improved definition of proper efficiency for vector maximization with respect to cones,, Journal of Mathematical Analysis and Applications, 71 (1979), 232. doi: 10.1016/0022-247X(79)90226-9. Google Scholar

[4]

J. M. Borwein and D. M. Zhuang, Super efficiency in vector optimiation,, Transactions of the American Mathematical Society, 338 (1993), 105. doi: 10.2307/2154446. Google Scholar

[5]

Y. H. Cheng and W. T. Fu, Strong efficiency in a locally convex space,, Mathematical Methods of Operations Research, 50 (1999), 373. doi: 10.1007/s001860050076. Google Scholar

[6]

H. W. Corley, Optimality conditions for maximizations of set-valued functions,, Journal of Optimization Theory and Applications, 58 (1988), 1. doi: 10.1007/BF00939767. Google Scholar

[7]

C. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization,, Journal of Optimization Theory and Applications, 67 (1990), 297. doi: 10.1007/BF00940478. Google Scholar

[8]

X. H. Gong, H. B. Dong and S. Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization,, Journal of Mathematical Analysis and Applications, 284 (2003), 332. doi: 10.1016/S0022-247X(03)00360-3. Google Scholar

[9]

X. H. Gong, Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior,, Journal of Mathematical Analysis and Applications, 307 (2005), 12. doi: 10.1016/j.jmaa.2004.10.001. Google Scholar

[10]

M. I. Henig, An improved definition of proper efficiency for vector maximization with respect to cones,, Journal of Optimization Theory and Applications, 94 (1997), 469. Google Scholar

[11]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimzation,, Mathematical Methods of Operation Research, 46 (1997), 193. doi: 10.1007/BF01217690. Google Scholar

[12]

C. S. Lalitha, J. Dutta and M. G. Govll, Optimality criteria in set-valued optimization,, ournal of the Australian mathematical society, 75 (2003), 221. doi: 10.1017/S1446788700003736. Google Scholar

[13]

D. T. Luc., Contingent derivatives of set-valued maps and applications to vector optimization,, Mathematical Programming, 50 (1991), 99. doi: 10.1007/BF01594928. Google Scholar

[14]

X. Q. Yang, Directional derivatives for set-valued mappings and applications,, Mathematical Methods of Operations Research, 48 (1998), 273. doi: 10.1007/s001860050028. Google Scholar

[15]

Guolin Yu, Directional derivatives and generalized cone-preinvex set-valued optimizaiton,, Acta Mathematica Sinica, 54 (2011), 875. Google Scholar

[16]

Guolin Yu and Sanyang Liu, Globally proper saddle point in ic-cone-convexlike set-valued optimization problems,, Act Mathematica Sinica (English Series), 25 (2009), 1921. doi: 10.1007/s10114-009-6144-9. Google Scholar

[17]

Guolin Yu and Sanyang Liu, Optimality conditions of globally proper efficient solutions for set-valued optimization problem,, Acta Mathematicae Applicatae Sinica(in Chinese), 33 (2010), 150. Google Scholar

[18]

Guolin Yu, Henig globally efficiency for set-valued optimization and vector variational inequality,, Journal of Systems Science & Complexity, 27 (2014), 338. doi: 10.1007/s11424-014-1215-0. Google Scholar

[19]

Guolin Yu, Topological properties of Henig globally efficient solutions of set-valued optimization problems,, Numerical Algebra, 4 (2014), 309. doi: 10.3934/naco.2014.4.309. Google Scholar

[20]

X. Y. Zheng, Proper efficiency in locally convex topological vector spaces,, Journal of Optimization Theory and Applications, 36 (1982), 387. Google Scholar

[1]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[2]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[3]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[4]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[5]

Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031

[6]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[7]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[8]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[9]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051

[10]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[11]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[12]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[13]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[14]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[15]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[16]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[17]

Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks & Heterogeneous Media, 2013, 8 (3) : 745-772. doi: 10.3934/nhm.2013.8.745

[18]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[19]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[20]

Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higher-order set-valued methods. Mathematical Control & Related Fields, 2019, 9 (2) : 223-255. doi: 10.3934/mcrf.2019012

 Impact Factor: 

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]