2015, 5(4): 351-357. doi: 10.3934/naco.2015.5.351

Solving the seepage problems with free surface by mathematical programming method

1. 

College of Science, Dalian Nationalities University, Dalian 116600, China, China

Received  January 2015 Revised  October 2015 Published  October 2015

The nonsmooth equations model for seepage problems is proposed based on the basic principles of the seepage dynamic system and the finite element discrete method. The mathematical programming method is therefore applied. The free surface of seepage is plotted through interpolation with pressure intensity on the nodes. The numerical results show the new method is simple and rapid in convergence rate.
Citation: Jinzhi Wang, Yuduo Zhang. Solving the seepage problems with free surface by mathematical programming method. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 351-357. doi: 10.3934/naco.2015.5.351
References:
[1]

K. J. Bathe, Finite element free surface seepage analysis without mesh iteration,, Int. J. Numer and Analytical Methods in Geomechanics, 3 (1979), 13. Google Scholar

[2]

W. J. Chen and Z. L. Wang, Finite element method of invariable mesh Gauss point for transient seepage problem with free surface,, Journal of dalian university of technology, 31 (1991), 537. Google Scholar

[3]

C. S. Desai and G. C. Li, A residual flow procedure and application for free surface in porous media,, Advances in Water Resources, 6 (1983), 27. Google Scholar

[4]

J. S. Pang and L. Q. Qi, Non-smooth equations: motivation and algorithms,, SIAM. J. OPTIM., 3 (1993), 443. doi: 10.1137/0803021. Google Scholar

[5]

H. Peng et al, Imaginary element for numerical analysis of seepage with free surface,, China Rural Water and Hydropower, 3 (1997), 26. Google Scholar

[6]

L. Q. Qi, Convergence analysis of some algorithms for solving non-smooth equation,, Math Oper Res., 18 (1993), 227. doi: 10.1287/moor.18.1.227. Google Scholar

[7]

J. Z. Wang and W. J. Chen, Mixed fixed-Point FE method for seepage problems with free surfaces,, Journal of Dalian University of Technology, 47 (2007), 793. Google Scholar

[8]

Y. T. Zhang, P. Chen and L. Wang, Initial flow method for seepage analysis with free surface,, Chinese journal of Hydraulic, 8 (1988), 18. Google Scholar

[9]

H. Zheng et al., A new formulation of Signorini's type for seepage problems with free surface,, International Journal for Numerical methods in engineering, (2005). Google Scholar

show all references

References:
[1]

K. J. Bathe, Finite element free surface seepage analysis without mesh iteration,, Int. J. Numer and Analytical Methods in Geomechanics, 3 (1979), 13. Google Scholar

[2]

W. J. Chen and Z. L. Wang, Finite element method of invariable mesh Gauss point for transient seepage problem with free surface,, Journal of dalian university of technology, 31 (1991), 537. Google Scholar

[3]

C. S. Desai and G. C. Li, A residual flow procedure and application for free surface in porous media,, Advances in Water Resources, 6 (1983), 27. Google Scholar

[4]

J. S. Pang and L. Q. Qi, Non-smooth equations: motivation and algorithms,, SIAM. J. OPTIM., 3 (1993), 443. doi: 10.1137/0803021. Google Scholar

[5]

H. Peng et al, Imaginary element for numerical analysis of seepage with free surface,, China Rural Water and Hydropower, 3 (1997), 26. Google Scholar

[6]

L. Q. Qi, Convergence analysis of some algorithms for solving non-smooth equation,, Math Oper Res., 18 (1993), 227. doi: 10.1287/moor.18.1.227. Google Scholar

[7]

J. Z. Wang and W. J. Chen, Mixed fixed-Point FE method for seepage problems with free surfaces,, Journal of Dalian University of Technology, 47 (2007), 793. Google Scholar

[8]

Y. T. Zhang, P. Chen and L. Wang, Initial flow method for seepage analysis with free surface,, Chinese journal of Hydraulic, 8 (1988), 18. Google Scholar

[9]

H. Zheng et al., A new formulation of Signorini's type for seepage problems with free surface,, International Journal for Numerical methods in engineering, (2005). Google Scholar

[1]

A. M. Bagirov, Moumita Ghosh, Dean Webb. A derivative-free method for linearly constrained nonsmooth optimization. Journal of Industrial & Management Optimization, 2006, 2 (3) : 319-338. doi: 10.3934/jimo.2006.2.319

[2]

Jueyou Li, Guoquan Li, Zhiyou Wu, Changzhi Wu, Xiangyu Wang, Jae-Myung Lee, Kwang-Hyo Jung. Incremental gradient-free method for nonsmooth distributed optimization. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1841-1857. doi: 10.3934/jimo.2017021

[3]

B. S. Goh, W. J. Leong, Z. Siri. Partial Newton methods for a system of equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 463-469. doi: 10.3934/naco.2013.3.463

[4]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[5]

Xiaojiao Tong, Shuzi Zhou. A smoothing projected Newton-type method for semismooth equations with bound constraints. Journal of Industrial & Management Optimization, 2005, 1 (2) : 235-250. doi: 10.3934/jimo.2005.1.235

[6]

Saeed Ketabchi, Hossein Moosaei, M. Parandegan, Hamidreza Navidi. Computing minimum norm solution of linear systems of equations by the generalized Newton method. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 113-119. doi: 10.3934/naco.2017008

[7]

Bum Ja Jin, Mariarosaria Padula. In a horizontal layer with free upper surface. Communications on Pure & Applied Analysis, 2002, 1 (3) : 379-415. doi: 10.3934/cpaa.2002.1.379

[8]

Daniel Coutand, Steve Shkoller. A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 429-449. doi: 10.3934/dcdss.2010.3.429

[9]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[10]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[11]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[12]

Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592

[13]

Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial & Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003

[14]

Henryk Leszczyński, Monika Wrzosek. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion. Mathematical Biosciences & Engineering, 2017, 14 (1) : 237-248. doi: 10.3934/mbe.2017015

[15]

Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171

[16]

T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201

[17]

Xiaojiao Tong, Felix F. Wu, Yongping Zhang, Zheng Yan, Yixin Ni. A semismooth Newton method for solving optimal power flow. Journal of Industrial & Management Optimization, 2007, 3 (3) : 553-567. doi: 10.3934/jimo.2007.3.553

[18]

Zhi-Feng Pang, Yu-Fei Yang. Semismooth Newton method for minimization of the LLT model. Inverse Problems & Imaging, 2009, 3 (4) : 677-691. doi: 10.3934/ipi.2009.3.677

[19]

Matthias Morzfeld, Daniel T. Kawano, Fai Ma. Characterization of damped linear dynamical systems in free motion. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 49-62. doi: 10.3934/naco.2013.3.49

[20]

Farah Abdallah, Mouhammad Ghader, Ali Wehbe, Yacine Chitour. Optimal indirect stability of a weakly damped elastic abstract system of second order equations coupled by velocities. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2789-2818. doi: 10.3934/cpaa.2019125

 Impact Factor: 

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]