
Previous Article
Dampening bullwhip effect of orderupto inventory strategies via an optimal control method
 NACO Home
 This Issue
 Next Article
Semidefinite programming based approaches for realtime tractor localization in port container terminals
1.  Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China, China 
2.  Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 
References:
[1] 
A. Y. Alfakih, A. Khandani and H. Wolkowicz, Solving Euclidean distance matrix completion problems via semidefinite programming,, Computational optimization and applications, 12 (1999), 13. doi: 10.1023/A:1008655427845. 
[2] 
X. Bai, X. Zheng and X. Sun, A survey on probabilistically constrainted optimization problems,, Numerical Algebra, 2 (2012), 767. doi: 10.3934/naco.2012.2.767. 
[3] 
P. Biswas, T.C. Liang, K.C. Toh, Y. Ye and T.C. Wang, Semidefinite programming approaches for sensor network localization with noisy distance measurements,, IEEE transactions on automation science and engineering, 3 (2006), 360. 
[4] 
P. Biswas, T. C. Liang, T. C. Wang and Y. Ye, Semidefinite programming based algorithms for sensor network localization,, ACM Transactions on Sensor Networks, 2 (2006), 188. 
[5] 
P. Biswas, K. C. Toh and Y. Ye, A distributed SDP approach for largescale noisy anchorfree graph realization with applications to molecular conformation,, SIAM Journal on Scientific Computing, 30 (2007), 1251. doi: 10.1137/05062754X. 
[6] 
P. Biswas and Y. Ye, Semidefinite programming for ad hoc wireless sensor network localization,, in, (2004), 46. 
[7] 
J.A. Costa, N. Patwari, and A.O. Hero, III, Distributed weightedmultidimensional scaling for node localization in sensor networks,, ACM Transactions on Sensor Networks, 2 (2006), 39. 
[8] 
L. Doherty, K. S. J. Pister and L. El Ghaoui, Convex position estimation in wireless sensor networks,, in, (2001), 1655. 
[9] 
T. Eren, O. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse, B. D. O. Anderson and P. N. Belhumeur, Rigidity, computation, and randomization in network localization,, in, (2004), 2673. 
[10] 
D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin and S. Wicker, "An Empirical Study of Epidemic Algorithms in Large Scale Multihop Wireless Networks,", Intel Corporation, (2002). 
[11] 
M. Gerdts, R. Henrion, D. Homberg and C. Landry, Path planning and collision avoidance for robots,, Numerical Algebra, 2 (2012), 437. doi: 10.3934/naco.2012.2.437. 
[12] 
A. A. Kannan, G. Mao and B. Vucetic, Simulated annealing based localization in wireless sensor network,, in, (2005), 513. 
[13] 
S. Kim, M. Kojima and H. Waki, Exploiting sparsity in SDP relaxation for sensor network localization,, SIAM Journal on Optimization, 20 (2009), 192. doi: 10.1137/080713380. 
[14] 
J. Lofberg, YALMIP: A toolbox for modeling and optimization in MATLAB,, in Proc. Int. Symp. CACSD, (2004), 284. 
[15] 
K. W. K. Lui, W. K. Ma, H. C. So and F. K. W. Chan, Semidefinite programming algorithms for sensor network node localization with uncertainties in anchor positions and/or propagation speed,, IEEE Transactions on Signal Processing, 57 (2009), 752. doi: 10.1109/TSP.2008.2007916. 
[16] 
J. J. Mor and Z. Wu, Global continuation for distance geometry problems,, SIAM Journal on Optimization, 7 (1997), 814. doi: 10.1137/S1052623495283024. 
[17] 
E. NiewiadomskaSzynkiewicz and M. Marks, Optimization schemes for wireless sensor network localization,, International Journal of Applied Mathematics and Computer Science, 19 (2009), 291. 
[18] 
R. W. Ouyang, A. K. Wong and C. T. Lea, Received signal strengthbased wireless localization via semidefinite programming: noncooperative and cooperative schemes,, IEEE Transactions on Vehicular Technology, 59 (2010), 1307. 
[19] 
A. M. C. So and Y. Ye, Theory of semidefinite programming for sensor network localization,, Mathematical Programming, 109 (2007), 367. doi: 10.1007/s1010700600401. 
[20] 
D. Steenken, S. Vos and R. Stahlbock, Container terminal operation and operations research  a classification and literature review,, OR Spectrum, 26 (2004), 3. doi: 10.1007/s0029100701009. 
[21] 
J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,, Optimization Methods and Software, 11 (1999), 625. doi: 10.1080/10556789908805766. 
[22] 
J. Sun, On methods for solving nonlinear semidefinite optimization problems,, Numerical Algebra, 1 (2011), 1. doi: 10.3934/naco.2011.1.1. 
[23] 
K. C. Toh, M. J. Todd and R. H. Tutuncu, SDPT3  a Matlab software package for semidefinite programming,, Optimization Methods and Software, 11 (1999), 545. doi: 10.1080/10556789908805762. 
[24] 
P. Tseng, Secondorder cone programming relaxation of sensor network localization,, SIAM Journal on Optimization, 18 (2008), 156. doi: 10.1137/050640308. 
[25] 
H. Waki, S. Kim, M. Kojima and M. Muramatsu, Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity,, SIAM Journal on Optimization, 17 (2006), 218. doi: 10.1137/050623802. 
[26] 
S. Y. Wang and Y. W. Li, Evaluation of intelligent traffic signal control algorithms under realistic landmarkbased traffic pattern over the NCTUns network simulator,, in, (2012), 379. 
[27] 
Z. Wang, S. Zheng, S. Boyd and Y. Ye, Further relaxations of the SDP approach to sensor network localization,, SIAM Journal on Optimization, 19 (2008), 655. doi: 10.1137/060669395. 
[28] 
S. Zhang, J. Cao, L. Chen and D. Chen, Accurate and energyefficient rangefree localization for mobile sensor networks,, IEEE Transactions on Mobile Computing, 9 (2010), 897. 
show all references
References:
[1] 
A. Y. Alfakih, A. Khandani and H. Wolkowicz, Solving Euclidean distance matrix completion problems via semidefinite programming,, Computational optimization and applications, 12 (1999), 13. doi: 10.1023/A:1008655427845. 
[2] 
X. Bai, X. Zheng and X. Sun, A survey on probabilistically constrainted optimization problems,, Numerical Algebra, 2 (2012), 767. doi: 10.3934/naco.2012.2.767. 
[3] 
P. Biswas, T.C. Liang, K.C. Toh, Y. Ye and T.C. Wang, Semidefinite programming approaches for sensor network localization with noisy distance measurements,, IEEE transactions on automation science and engineering, 3 (2006), 360. 
[4] 
P. Biswas, T. C. Liang, T. C. Wang and Y. Ye, Semidefinite programming based algorithms for sensor network localization,, ACM Transactions on Sensor Networks, 2 (2006), 188. 
[5] 
P. Biswas, K. C. Toh and Y. Ye, A distributed SDP approach for largescale noisy anchorfree graph realization with applications to molecular conformation,, SIAM Journal on Scientific Computing, 30 (2007), 1251. doi: 10.1137/05062754X. 
[6] 
P. Biswas and Y. Ye, Semidefinite programming for ad hoc wireless sensor network localization,, in, (2004), 46. 
[7] 
J.A. Costa, N. Patwari, and A.O. Hero, III, Distributed weightedmultidimensional scaling for node localization in sensor networks,, ACM Transactions on Sensor Networks, 2 (2006), 39. 
[8] 
L. Doherty, K. S. J. Pister and L. El Ghaoui, Convex position estimation in wireless sensor networks,, in, (2001), 1655. 
[9] 
T. Eren, O. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse, B. D. O. Anderson and P. N. Belhumeur, Rigidity, computation, and randomization in network localization,, in, (2004), 2673. 
[10] 
D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin and S. Wicker, "An Empirical Study of Epidemic Algorithms in Large Scale Multihop Wireless Networks,", Intel Corporation, (2002). 
[11] 
M. Gerdts, R. Henrion, D. Homberg and C. Landry, Path planning and collision avoidance for robots,, Numerical Algebra, 2 (2012), 437. doi: 10.3934/naco.2012.2.437. 
[12] 
A. A. Kannan, G. Mao and B. Vucetic, Simulated annealing based localization in wireless sensor network,, in, (2005), 513. 
[13] 
S. Kim, M. Kojima and H. Waki, Exploiting sparsity in SDP relaxation for sensor network localization,, SIAM Journal on Optimization, 20 (2009), 192. doi: 10.1137/080713380. 
[14] 
J. Lofberg, YALMIP: A toolbox for modeling and optimization in MATLAB,, in Proc. Int. Symp. CACSD, (2004), 284. 
[15] 
K. W. K. Lui, W. K. Ma, H. C. So and F. K. W. Chan, Semidefinite programming algorithms for sensor network node localization with uncertainties in anchor positions and/or propagation speed,, IEEE Transactions on Signal Processing, 57 (2009), 752. doi: 10.1109/TSP.2008.2007916. 
[16] 
J. J. Mor and Z. Wu, Global continuation for distance geometry problems,, SIAM Journal on Optimization, 7 (1997), 814. doi: 10.1137/S1052623495283024. 
[17] 
E. NiewiadomskaSzynkiewicz and M. Marks, Optimization schemes for wireless sensor network localization,, International Journal of Applied Mathematics and Computer Science, 19 (2009), 291. 
[18] 
R. W. Ouyang, A. K. Wong and C. T. Lea, Received signal strengthbased wireless localization via semidefinite programming: noncooperative and cooperative schemes,, IEEE Transactions on Vehicular Technology, 59 (2010), 1307. 
[19] 
A. M. C. So and Y. Ye, Theory of semidefinite programming for sensor network localization,, Mathematical Programming, 109 (2007), 367. doi: 10.1007/s1010700600401. 
[20] 
D. Steenken, S. Vos and R. Stahlbock, Container terminal operation and operations research  a classification and literature review,, OR Spectrum, 26 (2004), 3. doi: 10.1007/s0029100701009. 
[21] 
J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,, Optimization Methods and Software, 11 (1999), 625. doi: 10.1080/10556789908805766. 
[22] 
J. Sun, On methods for solving nonlinear semidefinite optimization problems,, Numerical Algebra, 1 (2011), 1. doi: 10.3934/naco.2011.1.1. 
[23] 
K. C. Toh, M. J. Todd and R. H. Tutuncu, SDPT3  a Matlab software package for semidefinite programming,, Optimization Methods and Software, 11 (1999), 545. doi: 10.1080/10556789908805762. 
[24] 
P. Tseng, Secondorder cone programming relaxation of sensor network localization,, SIAM Journal on Optimization, 18 (2008), 156. doi: 10.1137/050640308. 
[25] 
H. Waki, S. Kim, M. Kojima and M. Muramatsu, Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity,, SIAM Journal on Optimization, 17 (2006), 218. doi: 10.1137/050623802. 
[26] 
S. Y. Wang and Y. W. Li, Evaluation of intelligent traffic signal control algorithms under realistic landmarkbased traffic pattern over the NCTUns network simulator,, in, (2012), 379. 
[27] 
Z. Wang, S. Zheng, S. Boyd and Y. Ye, Further relaxations of the SDP approach to sensor network localization,, SIAM Journal on Optimization, 19 (2008), 655. doi: 10.1137/060669395. 
[28] 
S. Zhang, J. Cao, L. Chen and D. Chen, Accurate and energyefficient rangefree localization for mobile sensor networks,, IEEE Transactions on Mobile Computing, 9 (2010), 897. 
[1] 
Changzhi Wu, Chaojie Li, Qiang Long. A DC programming approach for sensor network localization with uncertainties in anchor positions. Journal of Industrial & Management Optimization, 2014, 10 (3) : 817826. doi: 10.3934/jimo.2014.10.817 
[2] 
Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semidefinite quadratic programming problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 319339. doi: 10.3934/jimo.2009.5.319 
[3] 
Yue Lu, YingEn Ge, LiWei Zhang. An alternating direction method for solving a class of inverse semidefinite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317336. doi: 10.3934/jimo.2016.12.317 
[4] 
Yi Xu, Jinjie Liu, Liqun Qi. A new class of positive semidefinite tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 111. doi: 10.3934/jimo.2018186 
[5] 
Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semidefinite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129144. doi: 10.3934/naco.2012.2.129 
[6] 
Stephane Chretien, Paul Clarkson. A fast algorithm for the semidefinite relaxation of the state estimation problem in power grids. Journal of Industrial & Management Optimization, 2017, 13 (5) : 113. doi: 10.3934/jimo.2018161 
[7] 
Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operatorvalued Riccati differential equation with semidefinite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315342. doi: 10.3934/eect.2019017 
[8] 
Hema K. Achanta, Soura Dasgupta, Raghuraman Mudumbai, Weiyu Xu, Zhi Ding. Optimum sensor placement for localization of a hazardous source under log normal shadowing. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 361382. doi: 10.3934/naco.2019024 
[9] 
Sebastià Galmés. Markovian characterization of node lifetime in a timedriven wireless sensor network. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 763780. doi: 10.3934/naco.2011.1.763 
[10] 
Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 24732485. doi: 10.3934/cpaa.2012.11.2473 
[11] 
Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics & Games, 2014, 1 (3) : 471484. doi: 10.3934/jdg.2014.1.471 
[12] 
Yanqun Liu, MingFang Ding. A ladder method for linear semiinfinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397412. doi: 10.3934/jimo.2014.10.397 
[13] 
Simone Göttlich, Stephan Knapp. SemiMarkovian capacities in production network models. Discrete & Continuous Dynamical Systems  B, 2017, 22 (9) : 32353258. doi: 10.3934/dcdsb.2017090 
[14] 
Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems  S, 2019, 12 (4&5) : 887900. doi: 10.3934/dcdss.2019059 
[15] 
Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 44394453. doi: 10.3934/dcds.2015.35.4439 
[16] 
Eduardo EspinosaAvila, Pablo Padilla Longoria, Francisco HernándezQuiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205216. doi: 10.3934/jdg.2017013 
[17] 
Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 115. doi: 10.3934/jimo.2008.4.1 
[18] 
Qing Liu, Armin Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure & Applied Analysis, 2015, 14 (1) : 167184. doi: 10.3934/cpaa.2015.14.167 
[19] 
Jaedal Jung, Ertugrul Taciroglu. A dividealternateandconquer approach for localization and shape identification of multiple scatterers in heterogeneous media using dynamic XFEM. Inverse Problems & Imaging, 2016, 10 (1) : 165193. doi: 10.3934/ipi.2016.10.165 
[20] 
Cheng Ma, Xun Li, KaFai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semiinfinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705726. doi: 10.3934/jimo.2012.8.705 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]