# American Institute of Mathematical Sciences

• Previous Article
Semi-definite programming based approaches for real-time tractor localization in port container terminals
• NACO Home
• This Issue
• Next Article
Characterizations of the $E$-Benson proper efficiency in vector optimization problems
2013, 3(4): 655-664. doi: 10.3934/naco.2013.3.655

## Dampening bullwhip effect of order-up-to inventory strategies via an optimal control method

 1 School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China 2 Department of Mathematics, Guizhou University, Guiyang, Guizhou, 550025, China 3 Department of Mathematics and Statistics, Curtin University, Perth, WA, 6845, Australia, Australia

Received  March 2013 Revised  October 2013 Published  October 2013

In this paper, we consider the bullwhip effect problem of an Order-Up-To (OUT) inventory strategy for a supply chain system. We firstly establish a new discrete-time dynamical model which is suitable to describe the OUT inventory strategy. Then, we analyze the bullwhip effect for the dynamical model of the supply chain system. We thus transform the bullwhip effect's dampening problem to a discrete-time optimal control problem. By using the Pontryagin's maximum principle, we compute the corresponding optimal control and obtain the optimal manufacturer productivity of goods. Finally, we carry out numerical simulation experiments to show that the devised optimal control strategy is useful to dampen the bullwhip effect which always happens in the supply chain system.
Citation: Honglei Xu, Peng Sui, Guanglu Zhou, Louis Caccetta. Dampening bullwhip effect of order-up-to inventory strategies via an optimal control method. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 655-664. doi: 10.3934/naco.2013.3.655
##### References:

show all references

##### References:
 [1] Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987 [2] Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016 [3] K. F. C. Yiu, L. L. Xie, K. L. Mak. Analysis of bullwhip effect in supply chains with heterogeneous decision models. Journal of Industrial & Management Optimization, 2009, 5 (1) : 81-94. doi: 10.3934/jimo.2009.5.81 [4] Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065 [5] Shuren Liu, Qiying Hu, Yifan Xu. Optimal inventory control with fixed ordering cost for selling by internet auctions. Journal of Industrial & Management Optimization, 2012, 8 (1) : 19-40. doi: 10.3934/jimo.2012.8.19 [6] Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1685-1700. doi: 10.3934/jimo.2018027 [7] Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations & Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011 [8] Ka Wo Lau, Yue Kuen Kwok. Optimal execution strategy of liquidation. Journal of Industrial & Management Optimization, 2006, 2 (2) : 135-144. doi: 10.3934/jimo.2006.2.135 [9] Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025 [10] K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81 [11] Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625 [12] Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091 [13] Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064 [14] Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001 [15] Peng Zhong, Suzanne Lenhart. Study on the order of events in optimal control of a harvesting problem modeled by integrodifference equations. Evolution Equations & Control Theory, 2013, 2 (4) : 749-769. doi: 10.3934/eect.2013.2.749 [16] Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Addendum to "Optimal control of multiscale systems using reduced-order models". Journal of Computational Dynamics, 2017, 4 (1&2) : 167-167. doi: 10.3934/jcd.2017006 [17] Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193 [18] Peng Zhong, Suzanne Lenhart. Optimal control of integrodifference equations with growth-harvesting-dispersal order. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2281-2298. doi: 10.3934/dcdsb.2012.17.2281 [19] Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Optimal control of multiscale systems using reduced-order models. Journal of Computational Dynamics, 2014, 1 (2) : 279-306. doi: 10.3934/jcd.2014.1.279 [20] Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres. Fractional order optimal control problems with free terminal time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 363-381. doi: 10.3934/jimo.2014.10.363

Impact Factor: