• Previous Article
    Necessary optimality conditions for infinite horizon variational problems on time scales
  • NACO Home
  • This Issue
  • Next Article
    An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems
2013, 3(1): 127-143. doi: 10.3934/naco.2013.3.127

Sensitivity based trajectory following control damping methods

1. 

McCoy School of Engineering, Midwestern State University, 3410 Taft Blvd., Wichita Falls, TX 76308, United States

Received  December 2011 Revised  November 2012 Published  January 2013

Synthesis of trajectory following optimization methods with Lyapunov optimizing control techniques create continuous controls suitable for systems with switching surfaces. Fundamental contributions include the optimization structure from which the control law is derived and mitigation of undesirable system behavior. It is assumed the analyst is concerned with minimization of control effort and a positive definite function of the state. Disturbance rejection and stability are primary control objectives. Given these priorities, a cost functional with optimal control inspired structure due to the use of minimum cost descent control is constructed. It contains an analyst defined state dependent cost function. Another term is included which is a function of the control effort modified appropriately to reflect that sufficient control is needed to drive the state to a switching surface. This derivation establishes optimization rationale for disturbance rejection and switching surface placement. The control effort term provides for mitigation of finite time interval switching control; a continuous time analog to discontinuous chatter. A different perspective on chatter elimination via sensitivity analysis is provided and inspires the final ``control damping" algorithm.
Citation: Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127
References:
[1]

M. Ahmad and J. Osman, Robust sliding mode control for robot manipulator tracking problem using a proportional-integral switching surface,, Proc. of the Student Conference on Research and Development, (2003), 29. Google Scholar

[2]

M. Chen, Y. Hwang and M. Tomizuka, A state dependent boundary layer design for sliding mode control,, IEEE Trans. Aut. Cont., 47 (2002), 1677. doi: 10.1109/TAC.2002.803534. Google Scholar

[3]

M. Corless and G. Leitmann, Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,, IEEE Trans. Aut., ac-26 (1981), 1139. Google Scholar

[4]

R. Figliola and D. Beasely, "Theory and Design for Mechanical Measurements,", 4th Edition, (2006). Google Scholar

[5]

B. Goh, Algorithms for unconstrained optimization via control theory ,, Journal of Optimization Theory and Applications, 92 (1997), 581. doi: 10.1023/A:1022607507153. Google Scholar

[6]

W. Grantham and T. Vincent, "Modern Control Systems Analysis and Design,", Wiley, (1993). Google Scholar

[7]

W. Grantham, Trajectory following optimization by gradient transformation differential equations,, Proc. 42nd IEEE Conf. on Decision and Control, (): 9. Google Scholar

[8]

W. Grantham, Some necessary conditions for steepest descent controllability,, Proceedings of the 1st American Controls Conference, (1982). Google Scholar

[9]

D. McDonald and W. Grantham, Singular perturbation trajectory following methods for min-max differential games,, in, (2006), 659. Google Scholar

[10]

T. Vincent and W. Grantham, Trajectory following methods in control system design,, Journal of Global Optimization, 23 (2002), 267. doi: 10.1023/A:1016530713343. Google Scholar

[11]

T. Vincent, B. Goh and K. Teo, Trajectory-following algorithms for min-max optimization problems,, Journal of Optimization Theory and Application, 75 (1992), 501. doi: 10.1007/BF00940489. Google Scholar

[12]

T. Vincent and W. Grantham, "Nonlinear and Optimal Control Systems,", Wiley, (1997). Google Scholar

show all references

References:
[1]

M. Ahmad and J. Osman, Robust sliding mode control for robot manipulator tracking problem using a proportional-integral switching surface,, Proc. of the Student Conference on Research and Development, (2003), 29. Google Scholar

[2]

M. Chen, Y. Hwang and M. Tomizuka, A state dependent boundary layer design for sliding mode control,, IEEE Trans. Aut. Cont., 47 (2002), 1677. doi: 10.1109/TAC.2002.803534. Google Scholar

[3]

M. Corless and G. Leitmann, Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,, IEEE Trans. Aut., ac-26 (1981), 1139. Google Scholar

[4]

R. Figliola and D. Beasely, "Theory and Design for Mechanical Measurements,", 4th Edition, (2006). Google Scholar

[5]

B. Goh, Algorithms for unconstrained optimization via control theory ,, Journal of Optimization Theory and Applications, 92 (1997), 581. doi: 10.1023/A:1022607507153. Google Scholar

[6]

W. Grantham and T. Vincent, "Modern Control Systems Analysis and Design,", Wiley, (1993). Google Scholar

[7]

W. Grantham, Trajectory following optimization by gradient transformation differential equations,, Proc. 42nd IEEE Conf. on Decision and Control, (): 9. Google Scholar

[8]

W. Grantham, Some necessary conditions for steepest descent controllability,, Proceedings of the 1st American Controls Conference, (1982). Google Scholar

[9]

D. McDonald and W. Grantham, Singular perturbation trajectory following methods for min-max differential games,, in, (2006), 659. Google Scholar

[10]

T. Vincent and W. Grantham, Trajectory following methods in control system design,, Journal of Global Optimization, 23 (2002), 267. doi: 10.1023/A:1016530713343. Google Scholar

[11]

T. Vincent, B. Goh and K. Teo, Trajectory-following algorithms for min-max optimization problems,, Journal of Optimization Theory and Application, 75 (1992), 501. doi: 10.1007/BF00940489. Google Scholar

[12]

T. Vincent and W. Grantham, "Nonlinear and Optimal Control Systems,", Wiley, (1997). Google Scholar

[1]

Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331

[2]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[3]

John T. Betts, Stephen L. Campbell, Claire Digirolamo. Initial guess sensitivity in Computational optimal control problems. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019031

[4]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[5]

Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1517-1534. doi: 10.3934/jimo.2018107

[6]

Orazio Arena. On some boundary control problems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 613-618. doi: 10.3934/dcdss.2016015

[7]

Zhong-Qiang Wu, Xi-Bo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1565-1577. doi: 10.3934/jimo.2018021

[8]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[9]

Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations & Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205

[10]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[11]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[12]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136

[13]

Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

[14]

Jean-Pierre de la Croix, Magnus Egerstedt. Analyzing human-swarm interactions using control Lyapunov functions and optimal control. Networks & Heterogeneous Media, 2015, 10 (3) : 609-630. doi: 10.3934/nhm.2015.10.609

[15]

Jairo Bochi, Michal Rams. The entropy of Lyapunov-optimizing measures of some matrix cocycles. Journal of Modern Dynamics, 2016, 10: 255-286. doi: 10.3934/jmd.2016.10.255

[16]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[17]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[18]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[19]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[20]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]