• Previous Article
    Performance analysis of transmission rate control algorithm from readers to a middleware in intelligent transportation systems
  • NACO Home
  • This Issue
  • Next Article
    A nonmonotone spectral projected gradient method for large-scale topology optimization problems
2012, 2(2): 377-393. doi: 10.3934/naco.2012.2.377

Numerical methods for estimating effective diffusion coefficients of three-dimensional drug delivery systems

1. 

School of Mathematics & Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

2. 

School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009

3. 

Department of Chemical Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6846

4. 

Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Received  October 2011 Revised  January 2012 Published  May 2012

This paper presents a numerical technique in three dimensions for estimating effective diffusion coefficients of drug release devices in rotating and flow-through fluid systems. We first formulate the drug release problems as diffusion equation systems with unknown effective diffusion coefficients. We then develop a numerical technique for estimating the unknown coefficients based on a nonlinear least-squares method and a finite volume discretization scheme for the 3D diffusion equations. Numerical experiments have been performed using experimental data and the numerical results are presented to show that our methods give accurate diffusivity estimations for the test problems.
Citation: Shalela Mohd--Mahali, Song Wang, Xia Lou, Sungging Pintowantoro. Numerical methods for estimating effective diffusion coefficients of three-dimensional drug delivery systems. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 377-393. doi: 10.3934/naco.2012.2.377
References:
[1]

C. Castel, D. Mazens, E. Favre and M. Leonard, Determination of diffusion coefficient from transitory uptake or release kinetics: Incidence of a recirculation loop,, Chemical Engineering Science, 63 (2008), 3564. doi: 10.1016/j.ces.2008.03.016. Google Scholar

[2]

O. Corzo and N. Bracho, Determination of water effective diffusion coefficient of sardine sheets during vacuum pulse osmotic dehydration,, LWT, 40 (2007), 1452. doi: 10.1016/j.lwt.2006.04.008. Google Scholar

[3]

J. Crank, "The Mathematics of Diffusion, 2nd ed.,", Oxford University Press, (1975). Google Scholar

[4]

B. Delaunay, Sur la sphére vide,, Izv Akad Nauk SSSR, 6 (1934), 793. Google Scholar

[5]

G. L. Dirichlet, Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen,, J Reine Angew Math, 40 (1850), 209. doi: 10.1515/crll.1850.40.209. Google Scholar

[6]

J. L. Duda, J. S. Vrentas, S. T. Ju and H. T. Liu, Prediction of diffusion coefficients for polymer-solvent systems,, AIChE Journal, 28 (1982), 279. doi: 10.1002/aic.690280217. Google Scholar

[7]

C. A. Farrugia, Flow-through dissolution testing: A comparison with stirred beaker methods,, The chronic ill, 6 (2002), 17. Google Scholar

[8]

A. Hukka, The effective diffusion coefficient and mass transfer coefficient of nordic softwoods as calculated from direct drying experiments,, Holzforschung, 53 (1999), 534. Google Scholar

[9]

K. Lavenberg, A method for the solution of certain nonlinear problems in least squares,, Quart. Appl. Math., 2 (1944), 164. Google Scholar

[10]

X. Lou, S. Wang and S. Y. Tan, Mathematics-aided quantitative analysis of diffusion characteristics of pHEMA sponge hydrogels,, Asia-Pac. J. Chem. Eng., 2 (2007), 609. Google Scholar

[11]

X. Lou, S. Munro and S. Wang, Drug release characteristics of phase separation pHEMA sponge materials,, Biomaterials, 25 (2004), 5071. doi: 10.1016/j.biomaterials.2004.01.058. Google Scholar

[12]

D. W. Marquardt, An algorithm for least squares estimation of nonlinear parameters,, SIAM J. Appl. Math., 11 (1963), 431. doi: 10.1137/0111030. Google Scholar

[13]

J. J. H. Miller and S. Wang, An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems,, J Comput Phys, 115 (1994), 56. doi: 10.1006/jcph.1994.1178. Google Scholar

[14]

S. Mohd Mahali, S. Wang and X. Lou, Determination of effective diffusion coefficients of drug delivery devices by a state observer approach,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 1119. Google Scholar

[15]

S. Mohd Mahali, S. Wang and X. Lou, Numerical methods for estimating effective diffusion coefficients of drug delivery devices in a flow-through system,, submitted., (). Google Scholar

[16]

M. W.-S. Tsang, "Ophthalmic Drug Release from Porous Poly-HEMA Hydrogels,", Honours Thesis, (2001). Google Scholar

[17]

H. S. Vibeke, L. P. Betty, G. K. Henning and M. Anette, In vivo in vitro correlations for poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media,, European J Pharmaceutical Sciences, 24 (2005), 305. Google Scholar

[18]

S. Wang, S. Mohd Mahali, A. McGuiness and X. Lou, Mathematical models for estimating effective diffusion parameters of spherical drug delivery devices,, Theor Chem Acc, 125 (2010), 659. doi: 10.1007/s00214-009-0649-2. Google Scholar

[19]

S. Wang and X. Lou, Numerical methods for the estimation of effective diffusion coefficients of 2D controlled drug delivery systems,, Optim. Eng., 11 (2010), 611. doi: 10.1007/s11081-008-9069-8. Google Scholar

[20]

S. Wang and X. Lou, An optimization approach to the estimation of effective drug diffusivity: from a planar disc into a finite external volume,, J Ind Manag Optim, 5 (2009), 127. Google Scholar

[21]

D. E. Wurster, V. Buraphacheep and J. M. Patel, The determination of diffusion coefficients in semisolids by Fourier Transform Infrared (Ft-Ir) Spectroscopy,, Pharmaceutical Research, 10 (1993), 616. doi: 10.1023/A:1018922724566. Google Scholar

[22]

K. Yip, K. Y. Tam and K. F. C. Yiu, An efficient method of calculating diffusion coefficients via eigenfunction expansion,, Journal of Chemical Information and Computer Science, 37 (1997), 367. doi: 10.1021/ci9604652. Google Scholar

[23]

Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares,, Numerical Algebra, 1 (2011), 15. doi: 10.3934/naco.2011.1.15. Google Scholar

show all references

References:
[1]

C. Castel, D. Mazens, E. Favre and M. Leonard, Determination of diffusion coefficient from transitory uptake or release kinetics: Incidence of a recirculation loop,, Chemical Engineering Science, 63 (2008), 3564. doi: 10.1016/j.ces.2008.03.016. Google Scholar

[2]

O. Corzo and N. Bracho, Determination of water effective diffusion coefficient of sardine sheets during vacuum pulse osmotic dehydration,, LWT, 40 (2007), 1452. doi: 10.1016/j.lwt.2006.04.008. Google Scholar

[3]

J. Crank, "The Mathematics of Diffusion, 2nd ed.,", Oxford University Press, (1975). Google Scholar

[4]

B. Delaunay, Sur la sphére vide,, Izv Akad Nauk SSSR, 6 (1934), 793. Google Scholar

[5]

G. L. Dirichlet, Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen,, J Reine Angew Math, 40 (1850), 209. doi: 10.1515/crll.1850.40.209. Google Scholar

[6]

J. L. Duda, J. S. Vrentas, S. T. Ju and H. T. Liu, Prediction of diffusion coefficients for polymer-solvent systems,, AIChE Journal, 28 (1982), 279. doi: 10.1002/aic.690280217. Google Scholar

[7]

C. A. Farrugia, Flow-through dissolution testing: A comparison with stirred beaker methods,, The chronic ill, 6 (2002), 17. Google Scholar

[8]

A. Hukka, The effective diffusion coefficient and mass transfer coefficient of nordic softwoods as calculated from direct drying experiments,, Holzforschung, 53 (1999), 534. Google Scholar

[9]

K. Lavenberg, A method for the solution of certain nonlinear problems in least squares,, Quart. Appl. Math., 2 (1944), 164. Google Scholar

[10]

X. Lou, S. Wang and S. Y. Tan, Mathematics-aided quantitative analysis of diffusion characteristics of pHEMA sponge hydrogels,, Asia-Pac. J. Chem. Eng., 2 (2007), 609. Google Scholar

[11]

X. Lou, S. Munro and S. Wang, Drug release characteristics of phase separation pHEMA sponge materials,, Biomaterials, 25 (2004), 5071. doi: 10.1016/j.biomaterials.2004.01.058. Google Scholar

[12]

D. W. Marquardt, An algorithm for least squares estimation of nonlinear parameters,, SIAM J. Appl. Math., 11 (1963), 431. doi: 10.1137/0111030. Google Scholar

[13]

J. J. H. Miller and S. Wang, An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems,, J Comput Phys, 115 (1994), 56. doi: 10.1006/jcph.1994.1178. Google Scholar

[14]

S. Mohd Mahali, S. Wang and X. Lou, Determination of effective diffusion coefficients of drug delivery devices by a state observer approach,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 1119. Google Scholar

[15]

S. Mohd Mahali, S. Wang and X. Lou, Numerical methods for estimating effective diffusion coefficients of drug delivery devices in a flow-through system,, submitted., (). Google Scholar

[16]

M. W.-S. Tsang, "Ophthalmic Drug Release from Porous Poly-HEMA Hydrogels,", Honours Thesis, (2001). Google Scholar

[17]

H. S. Vibeke, L. P. Betty, G. K. Henning and M. Anette, In vivo in vitro correlations for poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media,, European J Pharmaceutical Sciences, 24 (2005), 305. Google Scholar

[18]

S. Wang, S. Mohd Mahali, A. McGuiness and X. Lou, Mathematical models for estimating effective diffusion parameters of spherical drug delivery devices,, Theor Chem Acc, 125 (2010), 659. doi: 10.1007/s00214-009-0649-2. Google Scholar

[19]

S. Wang and X. Lou, Numerical methods for the estimation of effective diffusion coefficients of 2D controlled drug delivery systems,, Optim. Eng., 11 (2010), 611. doi: 10.1007/s11081-008-9069-8. Google Scholar

[20]

S. Wang and X. Lou, An optimization approach to the estimation of effective drug diffusivity: from a planar disc into a finite external volume,, J Ind Manag Optim, 5 (2009), 127. Google Scholar

[21]

D. E. Wurster, V. Buraphacheep and J. M. Patel, The determination of diffusion coefficients in semisolids by Fourier Transform Infrared (Ft-Ir) Spectroscopy,, Pharmaceutical Research, 10 (1993), 616. doi: 10.1023/A:1018922724566. Google Scholar

[22]

K. Yip, K. Y. Tam and K. F. C. Yiu, An efficient method of calculating diffusion coefficients via eigenfunction expansion,, Journal of Chemical Information and Computer Science, 37 (1997), 367. doi: 10.1021/ci9604652. Google Scholar

[23]

Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least squares,, Numerical Algebra, 1 (2011), 15. doi: 10.3934/naco.2011.1.15. Google Scholar

[1]

Shalela Mohd Mahali, Song Wang, Xia Lou. Determination of effective diffusion coefficients of drug delivery devices by a state observer approach. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1119-1136. doi: 10.3934/dcdsb.2011.16.1119

[2]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[3]

Hassan Belhadj, Mohamed Fihri, Samir Khallouq, Nabila Nagid. Optimal number of Schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 21-34. doi: 10.3934/dcdss.2018002

[4]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[5]

Song Wang, Xia Lou. An optimization approach to the estimation of effective drug diffusivity: From a planar disc into a finite external volume. Journal of Industrial & Management Optimization, 2009, 5 (1) : 127-140. doi: 10.3934/jimo.2009.5.127

[6]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[7]

Hong Wang, Aijie Cheng, Kaixin Wang. Fast finite volume methods for space-fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1427-1441. doi: 10.3934/dcdsb.2015.20.1427

[8]

Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15

[9]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[10]

Elena Beretta, Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-diffusion equation. Inverse Problems & Imaging, 2011, 5 (2) : 285-296. doi: 10.3934/ipi.2011.5.285

[11]

Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311

[12]

Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001

[13]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[14]

Zhi Lin, Katarína Boďová, Charles R. Doering. Models & measures of mixing & effective diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 259-274. doi: 10.3934/dcds.2010.28.259

[15]

Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152

[16]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[17]

Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669

[18]

JaEun Ku. Maximum norm error estimates for Div least-squares method for Darcy flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1305-1318. doi: 10.3934/dcds.2010.26.1305

[19]

H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175

[20]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]