2011, 1(4): 691-711. doi: 10.3934/naco.2011.1.691

Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches

1. 

Department of Mathematical Science, National Chengchi University, Taipei, Taiwan, Taiwan

Received  June 2011 Revised  August 2011 Published  November 2011

In this paper, we analyze a single server queueing system $C_k/C_m/1$. We construct a general solution space of vector product-forms for steady-state probability and express it in terms of singularities and vectors of the fundamental matrix polynomial $\textbf{Q}(\omega)$. It is shown that there is a strong relation between the singularities of $\textbf{Q}(\omega)$ and the roots of the characteristic polynomial involving the Laplace transforms of the inter-arrival and service times distributions. Thus, some steady-state probabilities may be written as a linear combination of vectors derived in expression of these roots. In this paper, we focus on solving a set of equations of matrix polynomials in the case of multiple roots. As a result, we give a closed-form solution of unboundary steady-state probabilities of $C_k/C_m/1$, thereupon considerably reducing the computational complexity of solving a complicated problem in a general queueing model.
Citation: Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691
References:
[1]

R. Bellman, "Introduction to Matrix Analysis,", MacGraw-Hill, (1960). Google Scholar

[2]

D. Bertsimas, An analytic approach to a general class of G/G/s queueing systems,, Operations Research, 38 (1990), 139. doi: 10.1287/opre.38.1.139. Google Scholar

[3]

F. De Terán, F. M. Dopico and J. Moro, Low rank perturbation of Weierstrass structure,, SIAM J. Matrix Anal. Appl., 30 (2008), 538. Google Scholar

[4]

R. V. Evans, Geometric distribution in some two-dimensional queueing systems,, Operations Research, 15 (1967), 830. doi: 10.1287/opre.15.5.830. Google Scholar

[5]

H. R. Gail, S. L. Hantler and B. A. Taylor, Matrix-geometric invariant measures for G/M/1 type Markov chains,, Commun. Statist.-Stochastic Models, 14 (1998), 537. Google Scholar

[6]

H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral analysis of M/G/1 and G/M/1 Type Markov chains,, Advanced Applied Probability, 28 (1996), 114. doi: 10.2307/1427915. Google Scholar

[7]

H. R. Gail, S. L. Hantler, M. Sidi and B. A. Taylor, Linear independence of root equations for M/G/1 type Markov chains,, Queueing Systems, 20 (1995), 321. doi: 10.1007/BF01245323. Google Scholar

[8]

I. C. Gohberg, P. Lancaster and L. Rodman, "Matrix Polynomials,", Academic Press, (1982). Google Scholar

[9]

M. F. Neuts, "Matrix-Geometric Solutions in Stochastic Models,", The John Hopkins University Press, (1981). Google Scholar

[10]

W. K. Grassmann, Real eigenvalues of certain tridiagonal matrix polynomials with queueing applications,, Linear Algebra and Its Applications, 342 (2002), 93. doi: 10.1016/S0024-3795(01)00462-1. Google Scholar

[11]

W. K. Grassmann and J. Tavakoli, A tandem queue with movable server: an eigenvalue approach,, SIAM J. Matrix Anal. Appl, 24 (2002), 465. Google Scholar

[12]

W. K. Grassmann and S. Drekic, An analytical solution for a tandem queue with blocking,, Queueing Systems, 36 (2000), 221. doi: 10.1023/A:1019139405059. Google Scholar

[13]

R. A. Horn and C. R. Johnson, "Topics in Matrix Analysis,", Cambridge University Press, (1999). Google Scholar

[14]

J. Y. Le Boudec, Steady-state probabilities of the PH/PH/1 queue,, Queueing Systems, 3 (1988), 73. doi: 10.1007/BF01159088. Google Scholar

[15]

H. Luh, Matrix product-form solutions of stationary probabilities in tandem queues,, Journal of the Operations Research, 42 (1999), 436. Google Scholar

[16]

A. Van De Liefvoort, The waiting-time distribution and its moments of the PH/PH/1 queue,, Operations Research Letters, 9 (1990), 261. doi: 10.1016/0167-6377(90)90071-C. Google Scholar

[17]

V. Wallace, "The Solution of Quasi Birth and Death Processes arising from Multiple Access Computer Systems,", Ph. D. diss., (0774), 07742. Google Scholar

show all references

References:
[1]

R. Bellman, "Introduction to Matrix Analysis,", MacGraw-Hill, (1960). Google Scholar

[2]

D. Bertsimas, An analytic approach to a general class of G/G/s queueing systems,, Operations Research, 38 (1990), 139. doi: 10.1287/opre.38.1.139. Google Scholar

[3]

F. De Terán, F. M. Dopico and J. Moro, Low rank perturbation of Weierstrass structure,, SIAM J. Matrix Anal. Appl., 30 (2008), 538. Google Scholar

[4]

R. V. Evans, Geometric distribution in some two-dimensional queueing systems,, Operations Research, 15 (1967), 830. doi: 10.1287/opre.15.5.830. Google Scholar

[5]

H. R. Gail, S. L. Hantler and B. A. Taylor, Matrix-geometric invariant measures for G/M/1 type Markov chains,, Commun. Statist.-Stochastic Models, 14 (1998), 537. Google Scholar

[6]

H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral analysis of M/G/1 and G/M/1 Type Markov chains,, Advanced Applied Probability, 28 (1996), 114. doi: 10.2307/1427915. Google Scholar

[7]

H. R. Gail, S. L. Hantler, M. Sidi and B. A. Taylor, Linear independence of root equations for M/G/1 type Markov chains,, Queueing Systems, 20 (1995), 321. doi: 10.1007/BF01245323. Google Scholar

[8]

I. C. Gohberg, P. Lancaster and L. Rodman, "Matrix Polynomials,", Academic Press, (1982). Google Scholar

[9]

M. F. Neuts, "Matrix-Geometric Solutions in Stochastic Models,", The John Hopkins University Press, (1981). Google Scholar

[10]

W. K. Grassmann, Real eigenvalues of certain tridiagonal matrix polynomials with queueing applications,, Linear Algebra and Its Applications, 342 (2002), 93. doi: 10.1016/S0024-3795(01)00462-1. Google Scholar

[11]

W. K. Grassmann and J. Tavakoli, A tandem queue with movable server: an eigenvalue approach,, SIAM J. Matrix Anal. Appl, 24 (2002), 465. Google Scholar

[12]

W. K. Grassmann and S. Drekic, An analytical solution for a tandem queue with blocking,, Queueing Systems, 36 (2000), 221. doi: 10.1023/A:1019139405059. Google Scholar

[13]

R. A. Horn and C. R. Johnson, "Topics in Matrix Analysis,", Cambridge University Press, (1999). Google Scholar

[14]

J. Y. Le Boudec, Steady-state probabilities of the PH/PH/1 queue,, Queueing Systems, 3 (1988), 73. doi: 10.1007/BF01159088. Google Scholar

[15]

H. Luh, Matrix product-form solutions of stationary probabilities in tandem queues,, Journal of the Operations Research, 42 (1999), 436. Google Scholar

[16]

A. Van De Liefvoort, The waiting-time distribution and its moments of the PH/PH/1 queue,, Operations Research Letters, 9 (1990), 261. doi: 10.1016/0167-6377(90)90071-C. Google Scholar

[17]

V. Wallace, "The Solution of Quasi Birth and Death Processes arising from Multiple Access Computer Systems,", Ph. D. diss., (0774), 07742. Google Scholar

[1]

Sung-Seok Ko. A nonhomogeneous quasi-birth-death process approach for an $ (s, S) $ policy for a perishable inventory system with retrial demands. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019009

[2]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[3]

Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67

[4]

Hilla Behar, Alexandra Agranovich, Yoram Louzoun. Diffusion rate determines balance between extinction and proliferation in birth-death processes. Mathematical Biosciences & Engineering, 2013, 10 (3) : 523-550. doi: 10.3934/mbe.2013.10.523

[5]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[6]

Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735

[7]

Jacques Henry. For which objective is birth process an optimal feedback in age structured population dynamics?. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 107-114. doi: 10.3934/dcdsb.2007.8.107

[8]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[9]

Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219

[10]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[11]

Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032

[12]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[13]

Victor Meng Hwee Ong, David J. Nott, Taeryon Choi, Ajay Jasra. Flexible online multivariate regression with variational Bayes and the matrix-variate Dirichlet process. Foundations of Data Science, 2019, 1 (2) : 129-156. doi: 10.3934/fods.2019006

[14]

Yuhong Dai, Nobuo Yamashita. Convergence analysis of sparse quasi-Newton updates with positive definite matrix completion for two-dimensional functions. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 61-69. doi: 10.3934/naco.2011.1.61

[15]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[16]

Yifu Feng, Min Zhang. A $p$-spherical section property for matrix Schatten-$p$ quasi-norm minimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2018159

[17]

Basim A. Hassan. A new type of quasi-Newton updating formulas based on the new quasi-Newton equation. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019049

[18]

Ryan Alvarado, Irina Mitrea, Marius Mitrea. Whitney-type extensions in quasi-metric spaces. Communications on Pure & Applied Analysis, 2013, 12 (1) : 59-88. doi: 10.3934/cpaa.2013.12.59

[19]

Andrew Yates, Robin Callard. Cell death and the maintenance of immunological memory. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 43-59. doi: 10.3934/dcdsb.2001.1.43

[20]

Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]