2011, 1(3): 371-379. doi: 10.3934/naco.2011.1.371

Strong convergence theorems with three-step iteration in star-shaped metric spaces

1. 

Department of Mathematics, Kyungsung University, Busan 608-736, South Korea

Received  April 2011 Revised  June 2011 Published  September 2011

The author considers a Noor-type three-step iterative scheme including Ishikawa-type scheme as a special case to approximate common fixed points of an infinite family of uniformly quasi-Lipschitzian mappings and an infinite family of nonexpansive mappings in star-shaped metric spaces. His results are cases of star-shaped metric space of results shown in [7].
Citation: Byung-Soo Lee. Strong convergence theorems with three-step iteration in star-shaped metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 371-379. doi: 10.3934/naco.2011.1.371
References:
[1]

S. S. Chang, L. Yang and X. R. Wang, Stronger convergence theroem for an infinite family of uniformly quasi-Lipschitzian mappings in convex metric spaces,, Appl. Math. Comput., 217 (2010), 277. doi: 10.1016/j.amc.2010.05.058. Google Scholar

[2]

Y. J. Cho, H. Y. Zhou and G. Guo, Weak and strong convengence theorems for three-step iteration with errors for asymptotically nonexpansive mappings,, Comput. Math. Appl., 47 (2004), 707. doi: 10.1016/S0898-1221(04)90058-2. Google Scholar

[3]

Hafiz Fukhar-ud-din and Safeer Hussin Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications,, J. Math. Anal. Appl., 328 (2007), 821. doi: 10.1016/j.jmaa.2006.05.068. Google Scholar

[4]

N. J. Huang and Y. J. Cho, Fixed point theorems of compatiable mappings in convex metric spaces,, Soochow J. Math., 22 (1996), 439. Google Scholar

[5]

A. R. Khan and M. A. Ahmed, Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications,, Com. Math. Appl., 59 (2010), 2990. doi: 10.1016/j.camwa.2010.02.017. Google Scholar

[6]

A. R. Khan, A. A. Domlo and H. Fukhar-ud-din, Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces,, J. Math. Anal. Appl., 341 (2008), 1. doi: 10.1016/j.jmaa.2007.06.051. Google Scholar

[7]

B. S. Lee, Strong convergence theorems with a Noor-type iterative scheme in convex metric spaces,, Com. Math. Appl., 61 (2011), 3218. doi: 10.1016/j.camwa.2011.04.017. Google Scholar

[8]

Q. Y. Liu, Z. B. Liu and N. J. Huang, Approximating the common fixed points of two sequences of uniformly quasi-Lipschitzian mappings in convex metric spaces,, Appl. Math. Comput., 216 (2010), 883. doi: 10.1016/j.amc.2010.01.096. Google Scholar

[9]

K. Nammanee and S. Suantai, The modified Noor iterations with errors for non-Lipschitzian mappings in Banach spaces,, Appl. Math. Comput., 187 (2007), 669. doi: 10.1016/j.amc.2006.08.081. Google Scholar

[10]

M. A. Noor, New approximation schemes for general variational inequalities,, J. Math. Anal. Appl., 251 (2000), 217. doi: 10.1006/jmaa.2000.7042. Google Scholar

[11]

M. A. Noor and Z. Huang, Three-step methods for nonexpansive mappings and variational inequalities,, Appl. Math. Comput., 187 (2007), 680. doi: 10.1016/j.amc.2006.08.088. Google Scholar

[12]

S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings,, J. Math. Anal. Appl., 311 (2005), 506. doi: 10.1016/j.jmaa.2005.03.002. Google Scholar

[13]

Y. X. Tian, Convergence of an Ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings,, Comput. Math. Appl., 49 (2005), 1905. doi: 10.1016/j.camwa.2004.05.017. Google Scholar

[14]

Y. X. Tian and C. D. Yang, Convergence theorems of three-step iterative scheme for a finite family of uniformly quasi-Lipschitzian mappings in convex metric spaces,, Fixed Point Theory and Applications vol. 2009, (2009). Google Scholar

[15]

C. Wang and L. W. Liu, Convergence theorems for fixed points of uniformly quasi-Lipschizian mappings in convex metric spaces,, Nonlinear Anal. TMA, 70 (2009), 2067. doi: 10.1016/j.na.2008.02.106. Google Scholar

[16]

C. Wang, J. H. Zhu, B. Damjanovic and L. G. Hu, Approximating fixed points of a pair of contractive type mappings in generalized convex metric spaces,, Appl. Math. Comput., 215 (2009), 1522. doi: 10.1016/j.amc.2009.07.006. Google Scholar

[17]

B. Xu and M. A. Noor, Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces,, J. Math. Anal. Appl., 267 (2002), 444. doi: 10.1006/jmaa.2001.7649. Google Scholar

[18]

Y. Yao and M. A. Noor, Convergence of three-step iteration for asymptotically nonexpansive mappings,, Appl. Math. Comput., 187 (2007), 883. doi: 10.1016/j.amc.2006.09.008. Google Scholar

show all references

References:
[1]

S. S. Chang, L. Yang and X. R. Wang, Stronger convergence theroem for an infinite family of uniformly quasi-Lipschitzian mappings in convex metric spaces,, Appl. Math. Comput., 217 (2010), 277. doi: 10.1016/j.amc.2010.05.058. Google Scholar

[2]

Y. J. Cho, H. Y. Zhou and G. Guo, Weak and strong convengence theorems for three-step iteration with errors for asymptotically nonexpansive mappings,, Comput. Math. Appl., 47 (2004), 707. doi: 10.1016/S0898-1221(04)90058-2. Google Scholar

[3]

Hafiz Fukhar-ud-din and Safeer Hussin Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications,, J. Math. Anal. Appl., 328 (2007), 821. doi: 10.1016/j.jmaa.2006.05.068. Google Scholar

[4]

N. J. Huang and Y. J. Cho, Fixed point theorems of compatiable mappings in convex metric spaces,, Soochow J. Math., 22 (1996), 439. Google Scholar

[5]

A. R. Khan and M. A. Ahmed, Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications,, Com. Math. Appl., 59 (2010), 2990. doi: 10.1016/j.camwa.2010.02.017. Google Scholar

[6]

A. R. Khan, A. A. Domlo and H. Fukhar-ud-din, Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces,, J. Math. Anal. Appl., 341 (2008), 1. doi: 10.1016/j.jmaa.2007.06.051. Google Scholar

[7]

B. S. Lee, Strong convergence theorems with a Noor-type iterative scheme in convex metric spaces,, Com. Math. Appl., 61 (2011), 3218. doi: 10.1016/j.camwa.2011.04.017. Google Scholar

[8]

Q. Y. Liu, Z. B. Liu and N. J. Huang, Approximating the common fixed points of two sequences of uniformly quasi-Lipschitzian mappings in convex metric spaces,, Appl. Math. Comput., 216 (2010), 883. doi: 10.1016/j.amc.2010.01.096. Google Scholar

[9]

K. Nammanee and S. Suantai, The modified Noor iterations with errors for non-Lipschitzian mappings in Banach spaces,, Appl. Math. Comput., 187 (2007), 669. doi: 10.1016/j.amc.2006.08.081. Google Scholar

[10]

M. A. Noor, New approximation schemes for general variational inequalities,, J. Math. Anal. Appl., 251 (2000), 217. doi: 10.1006/jmaa.2000.7042. Google Scholar

[11]

M. A. Noor and Z. Huang, Three-step methods for nonexpansive mappings and variational inequalities,, Appl. Math. Comput., 187 (2007), 680. doi: 10.1016/j.amc.2006.08.088. Google Scholar

[12]

S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings,, J. Math. Anal. Appl., 311 (2005), 506. doi: 10.1016/j.jmaa.2005.03.002. Google Scholar

[13]

Y. X. Tian, Convergence of an Ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings,, Comput. Math. Appl., 49 (2005), 1905. doi: 10.1016/j.camwa.2004.05.017. Google Scholar

[14]

Y. X. Tian and C. D. Yang, Convergence theorems of three-step iterative scheme for a finite family of uniformly quasi-Lipschitzian mappings in convex metric spaces,, Fixed Point Theory and Applications vol. 2009, (2009). Google Scholar

[15]

C. Wang and L. W. Liu, Convergence theorems for fixed points of uniformly quasi-Lipschizian mappings in convex metric spaces,, Nonlinear Anal. TMA, 70 (2009), 2067. doi: 10.1016/j.na.2008.02.106. Google Scholar

[16]

C. Wang, J. H. Zhu, B. Damjanovic and L. G. Hu, Approximating fixed points of a pair of contractive type mappings in generalized convex metric spaces,, Appl. Math. Comput., 215 (2009), 1522. doi: 10.1016/j.amc.2009.07.006. Google Scholar

[17]

B. Xu and M. A. Noor, Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces,, J. Math. Anal. Appl., 267 (2002), 444. doi: 10.1006/jmaa.2001.7649. Google Scholar

[18]

Y. Yao and M. A. Noor, Convergence of three-step iteration for asymptotically nonexpansive mappings,, Appl. Math. Comput., 187 (2007), 883. doi: 10.1016/j.amc.2006.09.008. Google Scholar

[1]

Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557

[2]

Farah Abou Shakra. Asymptotics of wave models for non star-shaped geometries. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 347-362. doi: 10.3934/dcdss.2014.7.347

[3]

F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783

[4]

Zhong-Jie Han, Enrique Zuazua. Decay rates for elastic-thermoelastic star-shaped networks. Networks & Heterogeneous Media, 2017, 12 (3) : 461-488. doi: 10.3934/nhm.2017020

[5]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[6]

Fuzhong Cong, Hongtian Li. Quasi-effective stability for a nearly integrable volume-preserving mapping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1959-1970. doi: 10.3934/dcdsb.2015.20.1959

[7]

Takahiro Hashimoto. Nonexistence of global solutions of nonlinear Schrodinger equations in non star-shaped domains. Conference Publications, 2007, 2007 (Special) : 487-494. doi: 10.3934/proc.2007.2007.487

[8]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[9]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[10]

Jason Metcalfe, Christopher D. Sogge. Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1589-1601. doi: 10.3934/dcds.2010.28.1589

[11]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[12]

T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223

[13]

John Banks. Topological mapping properties defined by digraphs. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 83-92. doi: 10.3934/dcds.1999.5.83

[14]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[15]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[16]

Ryan Alvarado, Irina Mitrea, Marius Mitrea. Whitney-type extensions in quasi-metric spaces. Communications on Pure & Applied Analysis, 2013, 12 (1) : 59-88. doi: 10.3934/cpaa.2013.12.59

[17]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[18]

Fernando Alcalde Cuesta, Ana Rechtman. Minimal Følner foliations are amenable. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 685-707. doi: 10.3934/dcds.2011.31.685

[19]

William E. Fitzgibbon. The work of Glenn F. Webb. Mathematical Biosciences & Engineering, 2015, 12 (4) : v-xvi. doi: 10.3934/mbe.2015.12.4v

[20]

Pietro Baldi. Quasi-periodic solutions of the equation $v_{t t} - v_{x x} +v^3 = f(v)$. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 883-903. doi: 10.3934/dcds.2006.15.883

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]