
Previous Article
Filterbased genetic algorithm for mixed variable programming
 NACO Home
 This Issue

Next Article
A nonconvergent example for the iterative waterfilling algorithm
A derivativefree trustregion algorithm for unconstrained optimization with controlled error
1.  Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyoku, Kyoto, 6068501,, Japan 
2.  Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyoku, Kyoto, 6068501 
References:
[1] 
I. Bongartz, A. R. Conn, N. I. M. Gould and Ph. L. Toint, CUTE: Constrained and unconstrained testing environment,, ACM Transactions on Mathematical Software, 21 (1995), 123. doi: 10.1145/200979.201043. 
[2] 
A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon and M. W. Trosset, A rigorous framework for optimization of expensive functions by surrogates,, Structural and Multidisciplinary Optimization, 17 (1999), 1. 
[3] 
T. D. Choi and C. T. Kelley, Superlinear Convergence and Implicit Filtering,, SIAM Journal on Optimization, 10 (2000), 1149. doi: 10.1137/S1052623499354096. 
[4] 
B. Colson, P. Marcotte and G. Savard, Bilevel programming: A survey,, 4OR: A Quarterly Journal of Operations Research, 3 (2005), 87. 
[5] 
A. R. Conn, N. I. M. Gould and Ph. L. Toint, "TrustRegion Methods,'', SIAM, (2000). doi: 10.1137/1.9780898719857. 
[6] 
A. R. Conn and Ph. L. Toint, An algorithm using quadratic interpolation for unconstrained derivative free optimization,, in, (1996), 27. 
[7] 
A. R. Conn, K. Scheinberg and Ph. L. Toint, A derivative free optimization algorithm in practice,, the American Institute of Aeronautics and Astronautics Conference, (1998). 
[8] 
A. R. Conn, K. Scheinberg and Ph. L. Toint, A derivative free optimization method via support vector machines,, 1999. Available from: , (). 
[9] 
A. R. Conn, K. Scheinberg and Ph. L. Toint, On the convergence of derivativefree methods for unconstrained optimization,, in, (1997), 83. 
[10] 
A. R. Conn, K. Scheinberg and L. N. Vicente, Geometry of interpolation sets in derivative free optimization,, Mathematical Programming, 111 (2008), 141. doi: 10.1007/s1010700600735. 
[11] 
A. R. Conn, K. Scheinberg and L. N. Vicente, Geometry of sample sets in derivative free optimization: Polynomial regression and underdetermined interpolation,, IMA Journal of Numerical Analysis, 28 (2008), 721. doi: 10.1093/imanum/drn046. 
[12] 
C. Cox and M. Rubinstein, "Option Markets,'', PrenticeHall, (1985). 
[13] 
N. Cristianini and J. ShaweTaylor, "An Introduction to Support Vector Machines and Other Kernelbased Methods,'', Cambridge University Press, (2000). 
[14] 
J. E. Dennis and V. Torczon, Direct search methods on parallel machines,, SIAM Journal on Optimization, 1 (1991), 448. doi: 10.1137/0801027. 
[15] 
R. A. Fisher, "The Design of Experiments,'', Oliver and Boyd Ltd., (1951). 
[16] 
P. Gilmore and C. T. Kelley, An implicit filtering algorithm for optimization of functions with many local minima,, SIAM Journal on Optimization, 5 (1995), 269. doi: 10.1137/0805015. 
[17] 
B. Karasözen, Survey of trustregion derivative free optimization methods,, Journal of Industrial and Management Optimization, 3 (2007), 321. 
[18] 
T. G. Kolda, R. M. Lewis and V. Torzcon, Optimization by direct search: new perspectives of some classical and modern methods,, SIAM Review, 45 (2003), 385. doi: 10.1137/S003614450242889. 
[19] 
J. A. Nelder and R. Mead, A simplex method for function minimization,, Computer Journal, 7 (1965), 308. 
[20] 
J. Nocedal and S. J. Wright, "Numerical Optimization,'', SpringerVerlag, (1999). doi: 10.1007/b98874. 
[21] 
M. J. D. Powell, Trust region methods that employ quadratic interpolation to the objective function,, Presentation at the 5th SIAM Conference on Optimization, (1996). 
[22] 
M. J. D. Powell, UOBYQA: unconstrained optimization by quadratic approximation,, Mathematical Programming, 92 (2002), 555. doi: 10.1007/s101070100290. 
[23] 
J. A. Tilley, Valuing American options in a path simulation model,, Transactions of the Society of Actuaries, 45 (1993), 83. 
[24] 
V. Torczon, On the convergence of the multidirectional search algorithm,, SIAM Journal on Optimization, 1 (1991), 123. doi: 10.1137/0801010. 
[25] 
D. Winfield, "Function and Functional Optimization by Interpolation in Data Tables,'', PhD thesis, (1969). 
[26] 
D. Winfield, Functional minimization by interpolation in a data table,, Journal of the Institute of Mathematics and its Applications, 12 (1973), 339. doi: 10.1093/imamat/12.3.339. 
show all references
References:
[1] 
I. Bongartz, A. R. Conn, N. I. M. Gould and Ph. L. Toint, CUTE: Constrained and unconstrained testing environment,, ACM Transactions on Mathematical Software, 21 (1995), 123. doi: 10.1145/200979.201043. 
[2] 
A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon and M. W. Trosset, A rigorous framework for optimization of expensive functions by surrogates,, Structural and Multidisciplinary Optimization, 17 (1999), 1. 
[3] 
T. D. Choi and C. T. Kelley, Superlinear Convergence and Implicit Filtering,, SIAM Journal on Optimization, 10 (2000), 1149. doi: 10.1137/S1052623499354096. 
[4] 
B. Colson, P. Marcotte and G. Savard, Bilevel programming: A survey,, 4OR: A Quarterly Journal of Operations Research, 3 (2005), 87. 
[5] 
A. R. Conn, N. I. M. Gould and Ph. L. Toint, "TrustRegion Methods,'', SIAM, (2000). doi: 10.1137/1.9780898719857. 
[6] 
A. R. Conn and Ph. L. Toint, An algorithm using quadratic interpolation for unconstrained derivative free optimization,, in, (1996), 27. 
[7] 
A. R. Conn, K. Scheinberg and Ph. L. Toint, A derivative free optimization algorithm in practice,, the American Institute of Aeronautics and Astronautics Conference, (1998). 
[8] 
A. R. Conn, K. Scheinberg and Ph. L. Toint, A derivative free optimization method via support vector machines,, 1999. Available from: , (). 
[9] 
A. R. Conn, K. Scheinberg and Ph. L. Toint, On the convergence of derivativefree methods for unconstrained optimization,, in, (1997), 83. 
[10] 
A. R. Conn, K. Scheinberg and L. N. Vicente, Geometry of interpolation sets in derivative free optimization,, Mathematical Programming, 111 (2008), 141. doi: 10.1007/s1010700600735. 
[11] 
A. R. Conn, K. Scheinberg and L. N. Vicente, Geometry of sample sets in derivative free optimization: Polynomial regression and underdetermined interpolation,, IMA Journal of Numerical Analysis, 28 (2008), 721. doi: 10.1093/imanum/drn046. 
[12] 
C. Cox and M. Rubinstein, "Option Markets,'', PrenticeHall, (1985). 
[13] 
N. Cristianini and J. ShaweTaylor, "An Introduction to Support Vector Machines and Other Kernelbased Methods,'', Cambridge University Press, (2000). 
[14] 
J. E. Dennis and V. Torczon, Direct search methods on parallel machines,, SIAM Journal on Optimization, 1 (1991), 448. doi: 10.1137/0801027. 
[15] 
R. A. Fisher, "The Design of Experiments,'', Oliver and Boyd Ltd., (1951). 
[16] 
P. Gilmore and C. T. Kelley, An implicit filtering algorithm for optimization of functions with many local minima,, SIAM Journal on Optimization, 5 (1995), 269. doi: 10.1137/0805015. 
[17] 
B. Karasözen, Survey of trustregion derivative free optimization methods,, Journal of Industrial and Management Optimization, 3 (2007), 321. 
[18] 
T. G. Kolda, R. M. Lewis and V. Torzcon, Optimization by direct search: new perspectives of some classical and modern methods,, SIAM Review, 45 (2003), 385. doi: 10.1137/S003614450242889. 
[19] 
J. A. Nelder and R. Mead, A simplex method for function minimization,, Computer Journal, 7 (1965), 308. 
[20] 
J. Nocedal and S. J. Wright, "Numerical Optimization,'', SpringerVerlag, (1999). doi: 10.1007/b98874. 
[21] 
M. J. D. Powell, Trust region methods that employ quadratic interpolation to the objective function,, Presentation at the 5th SIAM Conference on Optimization, (1996). 
[22] 
M. J. D. Powell, UOBYQA: unconstrained optimization by quadratic approximation,, Mathematical Programming, 92 (2002), 555. doi: 10.1007/s101070100290. 
[23] 
J. A. Tilley, Valuing American options in a path simulation model,, Transactions of the Society of Actuaries, 45 (1993), 83. 
[24] 
V. Torczon, On the convergence of the multidirectional search algorithm,, SIAM Journal on Optimization, 1 (1991), 123. doi: 10.1137/0801010. 
[25] 
D. Winfield, "Function and Functional Optimization by Interpolation in Data Tables,'', PhD thesis, (1969). 
[26] 
D. Winfield, Functional minimization by interpolation in a data table,, Journal of the Institute of Mathematics and its Applications, 12 (1973), 339. doi: 10.1093/imamat/12.3.339. 
[1] 
Liang Zhang, Wenyu Sun, Raimundo J. B. de Sampaio, Jinyun Yuan. A wedge trust region method with selfcorrecting geometry for derivativefree optimization. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 169184. doi: 10.3934/naco.2015.5.169 
[2] 
Bülent Karasözen. Survey of trustregion derivative free optimization methods. Journal of Industrial & Management Optimization, 2007, 3 (2) : 321334. doi: 10.3934/jimo.2007.3.321 
[3] 
A. M. Bagirov, Moumita Ghosh, Dean Webb. A derivativefree method for linearly constrained nonsmooth optimization. Journal of Industrial & Management Optimization, 2006, 2 (3) : 319338. doi: 10.3934/jimo.2006.2.319 
[4] 
WeiZhe Gu, LiYong Lu. The linear convergence of a derivativefree descent method for nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 531548. doi: 10.3934/jimo.2016030 
[5] 
Gaohang Yu. A derivativefree method for solving largescale nonlinear systems of equations. Journal of Industrial & Management Optimization, 2010, 6 (1) : 149160. doi: 10.3934/jimo.2010.6.149 
[6] 
DongHui Li, XiaoLin Wang. A modified FletcherReevesType derivativefree method for symmetric nonlinear equations. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 7182. doi: 10.3934/naco.2011.1.71 
[7] 
Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2005, 1 (2) : 171180. doi: 10.3934/jimo.2005.1.171 
[8] 
Xin Zhang, Jie Wen, Qin Ni. Subspace trustregion algorithm with conic model for unconstrained optimization. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 223234. doi: 10.3934/naco.2013.3.223 
[9] 
Honglan Zhu, Qin Ni, Meilan Zeng. A quasiNewton trust region method based on a new fractional model. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 237249. doi: 10.3934/naco.2015.5.237 
[10] 
Jun Chen, Wenyu Sun, Zhenghao Yang. A nonmonotone retrospective trustregion method for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 919944. doi: 10.3934/jimo.2013.9.919 
[11] 
Lijuan Zhao, Wenyu Sun. Nonmonotone retrospective conic trust region method for unconstrained optimization. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 309325. doi: 10.3934/naco.2013.3.309 
[12] 
Dan Xue, Wenyu Sun, Hongjin He. A structured trust region method for nonconvex programming with separable structure. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 283293. doi: 10.3934/naco.2013.3.283 
[13] 
Zhou Sheng, Gonglin Yuan, Zengru Cui, Xiabin Duan, Xiaoliang Wang. An adaptive trust region algorithm for largeresidual nonsmooth least squares problems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 707718. doi: 10.3934/jimo.2017070 
[14] 
Chunlin Hao, Xinwei Liu. A trustregion filterSQP method for mathematical programs with linear complementarity constraints. Journal of Industrial & Management Optimization, 2011, 7 (4) : 10411055. doi: 10.3934/jimo.2011.7.1041 
[15] 
Jinyu Dai, ShuCherng Fang, Wenxun Xing. Recovering optimal solutions via SOCSDP relaxation of trust region subproblem with nonintersecting linear constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 123. doi: 10.3934/jimo.2018117 
[16] 
Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143153. doi: 10.3934/jimo.2008.4.143 
[17] 
Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 18891902. doi: 10.3934/dcdsb.2012.17.1889 
[18] 
Orazio Muscato, Wolfgang Wagner. A stochastic algorithm without time discretization error for the Wigner equation. Kinetic & Related Models, 2019, 12 (1) : 5977. doi: 10.3934/krm.2019003 
[19] 
WolfJürgen Beyn, Raphael Kruse. Twosided error estimates for the stochastic theta method. Discrete & Continuous Dynamical Systems  B, 2010, 14 (2) : 389407. doi: 10.3934/dcdsb.2010.14.389 
[20] 
Wenling Zhao, Daojin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 775781. doi: 10.3934/jimo.2007.3.775 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]