# American Institute of Mathematical Sciences

doi: 10.3934/mcrf.2019035

## A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems

 Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran

Received  November 2017 Revised  February 2019 Published  August 2019

In this paper, we present a new method based on the Clenshaw-Curtis formula to solve a class of fractional optimal control problems. First, we convert the fractional optimal control problem to an equivalent problem in the fractional calculus of variations. Then, by utilizing the Clenshaw-Curtis formula and the Chebyshev-Gauss-Lobatto points, we transform the problem to a discrete form. By this approach, we get a nonlinear programming problem by solving of which we can approximate the optimal solution of the main problem. We analyze the convergence of the obtained approximate solution and solve some numerical examples to show the efficiency of the method.

Citation: Mohammad Hadi Noori Skandari, Marzieh Habibli, Alireza Nazemi. A direct method based on the Clenshaw-Curtis formula for fractional optimal control problems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2019035
##### References:

show all references

##### References:
The exact and approximate optimal state for $N = 4$ in Example 6.1
The exact and approximate optimal control for $N = 4$ in Example 6.1
The absolute error of the approximate optimal state in Example 6.1
The absolute error of the approximate optimal control in Example 6.1
The exact and approximate optimal state for $N = 6$ in Example 6.2
The exact and approximate optimal control for $N = 6$ in Example 6.2
The absolute error of approximate optimal state in Example 6.2
The absolute error of the approximate control in Example 6.2
The exact and approximate optimal state for $N = 6$ in Example 6.3
The exact and approximate optimal control for $N = 6$ in Example 6.3
The absolute error of the approximate optimal state in Example 6.3
The absolute error of the approximate optimal control in Example 6.3
The maximum absolute error for $N = 4$ in Example 6.1
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $\underset{t}{\mathrm{Max}}|E_x(t)|$ $6.077585\times 10^{-5}$ $2.236463 \times 10^{-5}$ $1.662597\times 10^{-3}$ $\underset{t}{\mathrm{Max}}|E_u(t)|$ $2.031847\times 10^{-5}$ $6.593832 \times 10^{-5}$ $4.616561\times 10^{-4}$
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $\underset{t}{\mathrm{Max}}|E_x(t)|$ $6.077585\times 10^{-5}$ $2.236463 \times 10^{-5}$ $1.662597\times 10^{-3}$ $\underset{t}{\mathrm{Max}}|E_u(t)|$ $2.031847\times 10^{-5}$ $6.593832 \times 10^{-5}$ $4.616561\times 10^{-4}$
The optimal value of the objective functional for $N = 4$ in Example 6.name-style="western"
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $J^*$ $7.986571 \times 10^{-10}$ $1.200881\times 10^{-8}$ $6.080480\times 10^{-7}$
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $J^*$ $7.986571 \times 10^{-10}$ $1.200881\times 10^{-8}$ $6.080480\times 10^{-7}$
The maximum absolute error for $N = 6$ in Example 6.2
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $\underset{t}{\mathrm{Max}}|E_x(t)|$ $1.128957\times 10^{-3}$ $2.967422 \times 10^{-4}$ $1.393032\times 10^{-3}$ $\underset{t}{\mathrm{Max}}|E_u(t)|$ $1.508986\times 10^{-2}$ $5.269326 \times 10^{-3}$ $2.011737\times 10^{-3}$
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $\underset{t}{\mathrm{Max}}|E_x(t)|$ $1.128957\times 10^{-3}$ $2.967422 \times 10^{-4}$ $1.393032\times 10^{-3}$ $\underset{t}{\mathrm{Max}}|E_u(t)|$ $1.508986\times 10^{-2}$ $5.269326 \times 10^{-3}$ $2.011737\times 10^{-3}$
The optimal value of the objective function for $N = 6$ in Example 6.2
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $J^*$ $4.699837 \times 10^{-6}$ $5.516687\times 10^{-7}$ $8.165173\times 10^{-8}$
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $J^*$ $4.699837 \times 10^{-6}$ $5.516687\times 10^{-7}$ $8.165173\times 10^{-8}$
The maximum absolute error for $N = 6$ in Example 6.3
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $\underset{t}{\mathrm{Max}}|E_x(t)|$ $2.475186\times 10^{-3}$ $3.593088 \times 10^{-4}$ $1.005558\times 10^{-3}$ $\underset{t}{\mathrm{Max}}|E_u(t)|$ $5.873404\times 10^{-2}$ $5.118654 \times 10^{-3}$ $5.399343\times 10^{-3}$
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $\underset{t}{\mathrm{Max}}|E_x(t)|$ $2.475186\times 10^{-3}$ $3.593088 \times 10^{-4}$ $1.005558\times 10^{-3}$ $\underset{t}{\mathrm{Max}}|E_u(t)|$ $5.873404\times 10^{-2}$ $5.118654 \times 10^{-3}$ $5.399343\times 10^{-3}$
The optimal value of the objective functional for $N = 6$ in Example 6.3
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $J^*$ $1.080409 \times 10^{-7}$ $2.074337\times 10^{-9}$ $4.013053\times 10^{-9}$
 $\alpha = 0.5$ $\alpha = 0.6$ $\alpha = 0.7$ $J^*$ $1.080409 \times 10^{-7}$ $2.074337\times 10^{-9}$ $4.013053\times 10^{-9}$
 [1] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057 [2] Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016 [3] Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033 [4] Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317 [5] Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060 [6] Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 [7] Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73 [8] Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 539-560. doi: 10.3934/dcdss.2020030 [9] Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004 [10] Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres. Fractional order optimal control problems with free terminal time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 363-381. doi: 10.3934/jimo.2014.10.363 [11] Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615 [12] Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035 [13] Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial & Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629 [14] Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170 [15] Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27 [16] Ekta Mittal, Sunil Joshi. Note on a $k$-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 797-804. doi: 10.3934/dcdss.2020045 [17] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 937-956. doi: 10.3934/dcdss.2020055 [18] Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023 [19] Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001 [20] Tuğba Akman Yıldız, Amin Jajarmi, Burak Yıldız, Dumitru Baleanu. New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 407-428. doi: 10.3934/dcdss.2020023

2018 Impact Factor: 1.292