• Previous Article
    Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme
  • MCRF Home
  • This Issue
  • Next Article
    Finite element error estimates for one-dimensional elliptic optimal control by BV-functions
doi: 10.3934/mcrf.2019033

Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative

1. 

College of Information Science and Technology, Donghua University, Shanghai 201620, China

2. 

School of Computer Science, China University of Geosciences, Wuhan 430074, China

3. 

School of Engineering (MESA-Lab), University of California, Merced, CA 95343, USA

4. 

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

* Corresponding author

Received  July 2018 Revised  February 2019 Published  April 2019

Fund Project: The second author is supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan (No.CUG170627), the Natural Science Foundation of China (NSFC, No.KZ18W30084) and the Hubei NSFC (No.2017CFB279)

This paper investigates the regional gradient controllability for ultra-slow diffusion processes governed by the time fractional diffusion systems with a Hadamard-Caputo time fractional derivative. Some necessary and sufficient conditions on regional gradient exact and approximate controllability are first given and proved in detail. Secondly, we propose an approach on how to calculate the minimum number of $\omega-$strategic actuators. Moreover, the existence, uniqueness and the concrete form of the optimal controller for the system under consideration are presented by employing the Hilbert Uniqueness Method (HUM) among all the admissible ones. Finally, we illustrate our results by an interesting example.

Citation: Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2019033
References:
[1]

A. Aacute and D. Castillo-Negrete, Fluid limit of the continuous-time random walk with general Levy jump distribution functions, Physical Review E Statistical Nonlinear and Soft Matter Physics, 76 (2007), 041105.Google Scholar

[2]

S. AbbasM. BenchohraJ. E. Lazreg and Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos Solitons and Fractals, 102 (2017), 47-71. doi: 10.1016/j.chaos.2017.03.010. Google Scholar

[3] L. AfifiA. El Jai and E. Zerrik, Regional Analysis of Linear Distributed Parameter Systems, Princeton University Press, Princeton, 2005. Google Scholar
[4]

B. Ahmad, S. K. Ntouyas and J. Tariboon, et al., Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer International Publishing, 2017. doi: 10.1007/978-3-319-52141-1. Google Scholar

[5]

P. L. ButzerA. A. Kilbas and J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269 (2002), 387-400. doi: 10.1016/S0022-247X(02)00049-5. Google Scholar

[6]

L. C. Evans, Partial Differential Equations, Vol. 19, American Mathematical Society, 2010. doi: 10.1090/gsm/019. Google Scholar

[7]

R. Garra and F. Polito, On some operators involving Hadamard derivatives, Integral Transforms and Special Functions, 24 (2013), 773-782. doi: 10.1080/10652469.2012.756875. Google Scholar

[8]

F. Ge, Y. Q. Chen and C. Kou, Regional Analysis of Time-Fractional Diffusion Processes, Springer, 2018. doi: 10.1007/978-3-319-72896-4. Google Scholar

[9]

F. GeY. Q. Chen and C. Kou, Regional gradient controllability of sub-diffusion processes, Journal of Mathematical Analysis and Applications, 440 (2016), 865-884. doi: 10.1016/j.jmaa.2016.03.051. Google Scholar

[10]

F. GeY. Q. ChenC. Kou and I. Podlubny, On the regional controllability of the sub-diffusion process with Caputo fractional derivative, Fractional Calculus and Applied Analysis, 19 (2016), 1262-1281. doi: 10.1515/fca-2016-0065. Google Scholar

[11]

F. GeY. Q. Chen and C. Kou, Regional controllability analysis of fractional diffusion equations with Riemann-Liouville time fractional derivatives, Automatica, 76 (2017), 193-199. doi: 10.1016/j.automatica.2016.10.018. Google Scholar

[12]

F. GeY. Q. Chen and C. Kou, Actuator characterisations to achieve approximate controllability for a class of fractional sub-diffusion equations, International Journal of Control, 90 (2017), 1212-1220. doi: 10.1080/00207179.2016.1163619. Google Scholar

[13]

Z. Gong, D. Qian and C. Li, et al., On the Hadamard type fractional differential system, Fractional Dynamics and Control. Springer, New York, (2012), 159–171. doi: 10.1007/978-1-4614-0457-6_13. Google Scholar

[14]

V. Govindaraj and R. K. George, Controllability of fractional dynamical systems–-A functional analytic approach, Mathematical Control and Related Fields, 7 (2017), 537-562. doi: 10.3934/mcrf.2017020. Google Scholar

[15]

J. R. GraefS. R. Grace and E. Tunc, Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives, Fractional Calculus and Applied Analysis, 20 (2017), 71-87. doi: 10.1515/fca-2017-0004. Google Scholar

[16]

J. Hadamard, Essai sur letude des fonctions donnees par leur developpement de Taylor, Journal de Mathematiques Pures et Appliquees, 8 (1892), 101–186 (In French).Google Scholar

[17] A. EI Jai and A. J. Pritchard, Sensors and Controls in the Analysis of Distributed Systems, Halsted Press, 1988. Google Scholar
[18]

F. JaradT. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, 2012 (2012), 1-8. doi: 10.1186/1687-1847-2012-142. Google Scholar

[19]

Q. Katatbeha and A. Al-Omarib, Existence and uniqueness of mild and classical solutions to fractional order Hadamard-type Cauchy problem, Journal of Nonlinear Science and Applications, 9 (2016), 827-835. doi: 10.22436/jnsa.009.03.11. Google Scholar

[20]

F. A. KhodjaF. Chouly and M. Duprez, Partial null controllability of parabolic linear systems, Mathematical Control and Related Fields, 6 (2016), 185-216. doi: 10.3934/mcrf.2016001. Google Scholar

[21]

F. A. KhodjaA. BenabdallahM. G. Burgos and L. Teresa, Recent results on the controllability of linear coupled parabolic problems–-A survey, Mathematical Control and Related Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267. Google Scholar

[22]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. Google Scholar

[23]

A. A. Kilbas, Hadamard-type fractional calculus, Journal of the Korean Mathematical Society, 38 (2001), 1191-1204. Google Scholar

[24]

H. LeivaN. Merentes and J. L. Sanchez, Approximate controllability of semilinear reaction diffusion equations, Mathematical Control and Related Fields, 2 (2012), 171-182. doi: 10.3934/mcrf.2012.2.171. Google Scholar

[25]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Vol. 170, Springer Verlag, 1971. Google Scholar

[26]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68. doi: 10.1137/1030001. Google Scholar

[27]

Y. Liu, Survey and new results on boundary-value problems of singular fractional differential equations with impulse effects, Electronic Journal of Differential Equations, 296 (2016), 1-177. Google Scholar

[28]

Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE, Mathematics of Control Signals and Systems, 28 (2016), Art. 10, 21 pp. doi: 10.1007/s00498-016-0162-9. Google Scholar

[29]

F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, Physics, (2007), 312–350.Google Scholar

[30]

F. Mainardi, A. Mura and G. Pagnini, et al., Sub-diffusion equations of fractional order and their fundamental solutions, Mathematical Methods in Engineering. Springer, (2007), 23–55.Google Scholar

[31]

T. Mur and H. R. Henriquez, Relative controllability of linear systems of fractional order with delay, Mathematical Control and Related Fields, 5 (2015), 845-858. doi: 10.3934/mcrf.2015.5.845. Google Scholar

[32] I. Podlubny, Fractional Differential Equations, Academic Press, 1999. Google Scholar
[33]

Y. Povstenko, Fractional Thermoelasticity, Springer International Publishing, 2015. doi: 10.1007/978-3-319-15335-3. Google Scholar

[34]

A. J. Pritchard and A. Wirth, Unbounded control and observation systems and their duality, SIAM Journal on Control and Optimization, 16 (1978), 535-545. doi: 10.1137/0316036. Google Scholar

[35]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications, Gordon and Breach Science Publishers, Yverdon, 1993. Google Scholar

[36]

J. Tariboon, S. K. Ntouyas and C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Advances in Mathematical Physics, 2014 (2014), Art. ID 372749, 15 pp. doi: 10.1155/2014/372749. Google Scholar

[37]

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371 (2002), 461-580. doi: 10.1016/S0370-1573(02)00331-9. Google Scholar

[38]

C. Zeng and Y. Q. Chen, Optimal random search, fractional dynamics and fractional calculus, Fractional Calculus and Applied Analysis, 17 (2014), 321-332. doi: 10.2478/s13540-014-0171-7. Google Scholar

[39]

E. ZerrikA. Boutoulout and A. Kamal, Regional gradient controllability of parabolic systems, International Journal of Applied Mathematics and Computer Science, 9 (1999), 767-787. Google Scholar

[40]

E. ZerrikA. Kamal and A. Boutoulout, Regional gradient controllability and actuators, International Journal of Systems Science, 33 (2002), 239-246. doi: 10.1080/00207720110073163. Google Scholar

[41]

E. Zerrik and F. Ghafrani, Regional gradient-constrained control problem. Approaches and simulations, Journal of Dynamical and Control Systems, 9 (2003), 585-599. doi: 10.1023/A:1025652520034. Google Scholar

[42]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Computers and Mathematics with Applications, 59 (2010), 1063-1077. doi: 10.1016/j.camwa.2009.06.026. Google Scholar

show all references

References:
[1]

A. Aacute and D. Castillo-Negrete, Fluid limit of the continuous-time random walk with general Levy jump distribution functions, Physical Review E Statistical Nonlinear and Soft Matter Physics, 76 (2007), 041105.Google Scholar

[2]

S. AbbasM. BenchohraJ. E. Lazreg and Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability, Chaos Solitons and Fractals, 102 (2017), 47-71. doi: 10.1016/j.chaos.2017.03.010. Google Scholar

[3] L. AfifiA. El Jai and E. Zerrik, Regional Analysis of Linear Distributed Parameter Systems, Princeton University Press, Princeton, 2005. Google Scholar
[4]

B. Ahmad, S. K. Ntouyas and J. Tariboon, et al., Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer International Publishing, 2017. doi: 10.1007/978-3-319-52141-1. Google Scholar

[5]

P. L. ButzerA. A. Kilbas and J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269 (2002), 387-400. doi: 10.1016/S0022-247X(02)00049-5. Google Scholar

[6]

L. C. Evans, Partial Differential Equations, Vol. 19, American Mathematical Society, 2010. doi: 10.1090/gsm/019. Google Scholar

[7]

R. Garra and F. Polito, On some operators involving Hadamard derivatives, Integral Transforms and Special Functions, 24 (2013), 773-782. doi: 10.1080/10652469.2012.756875. Google Scholar

[8]

F. Ge, Y. Q. Chen and C. Kou, Regional Analysis of Time-Fractional Diffusion Processes, Springer, 2018. doi: 10.1007/978-3-319-72896-4. Google Scholar

[9]

F. GeY. Q. Chen and C. Kou, Regional gradient controllability of sub-diffusion processes, Journal of Mathematical Analysis and Applications, 440 (2016), 865-884. doi: 10.1016/j.jmaa.2016.03.051. Google Scholar

[10]

F. GeY. Q. ChenC. Kou and I. Podlubny, On the regional controllability of the sub-diffusion process with Caputo fractional derivative, Fractional Calculus and Applied Analysis, 19 (2016), 1262-1281. doi: 10.1515/fca-2016-0065. Google Scholar

[11]

F. GeY. Q. Chen and C. Kou, Regional controllability analysis of fractional diffusion equations with Riemann-Liouville time fractional derivatives, Automatica, 76 (2017), 193-199. doi: 10.1016/j.automatica.2016.10.018. Google Scholar

[12]

F. GeY. Q. Chen and C. Kou, Actuator characterisations to achieve approximate controllability for a class of fractional sub-diffusion equations, International Journal of Control, 90 (2017), 1212-1220. doi: 10.1080/00207179.2016.1163619. Google Scholar

[13]

Z. Gong, D. Qian and C. Li, et al., On the Hadamard type fractional differential system, Fractional Dynamics and Control. Springer, New York, (2012), 159–171. doi: 10.1007/978-1-4614-0457-6_13. Google Scholar

[14]

V. Govindaraj and R. K. George, Controllability of fractional dynamical systems–-A functional analytic approach, Mathematical Control and Related Fields, 7 (2017), 537-562. doi: 10.3934/mcrf.2017020. Google Scholar

[15]

J. R. GraefS. R. Grace and E. Tunc, Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives, Fractional Calculus and Applied Analysis, 20 (2017), 71-87. doi: 10.1515/fca-2017-0004. Google Scholar

[16]

J. Hadamard, Essai sur letude des fonctions donnees par leur developpement de Taylor, Journal de Mathematiques Pures et Appliquees, 8 (1892), 101–186 (In French).Google Scholar

[17] A. EI Jai and A. J. Pritchard, Sensors and Controls in the Analysis of Distributed Systems, Halsted Press, 1988. Google Scholar
[18]

F. JaradT. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, 2012 (2012), 1-8. doi: 10.1186/1687-1847-2012-142. Google Scholar

[19]

Q. Katatbeha and A. Al-Omarib, Existence and uniqueness of mild and classical solutions to fractional order Hadamard-type Cauchy problem, Journal of Nonlinear Science and Applications, 9 (2016), 827-835. doi: 10.22436/jnsa.009.03.11. Google Scholar

[20]

F. A. KhodjaF. Chouly and M. Duprez, Partial null controllability of parabolic linear systems, Mathematical Control and Related Fields, 6 (2016), 185-216. doi: 10.3934/mcrf.2016001. Google Scholar

[21]

F. A. KhodjaA. BenabdallahM. G. Burgos and L. Teresa, Recent results on the controllability of linear coupled parabolic problems–-A survey, Mathematical Control and Related Fields, 1 (2011), 267-306. doi: 10.3934/mcrf.2011.1.267. Google Scholar

[22]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. Google Scholar

[23]

A. A. Kilbas, Hadamard-type fractional calculus, Journal of the Korean Mathematical Society, 38 (2001), 1191-1204. Google Scholar

[24]

H. LeivaN. Merentes and J. L. Sanchez, Approximate controllability of semilinear reaction diffusion equations, Mathematical Control and Related Fields, 2 (2012), 171-182. doi: 10.3934/mcrf.2012.2.171. Google Scholar

[25]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Vol. 170, Springer Verlag, 1971. Google Scholar

[26]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68. doi: 10.1137/1030001. Google Scholar

[27]

Y. Liu, Survey and new results on boundary-value problems of singular fractional differential equations with impulse effects, Electronic Journal of Differential Equations, 296 (2016), 1-177. Google Scholar

[28]

Q. Lü and E. Zuazua, On the lack of controllability of fractional in time ODE and PDE, Mathematics of Control Signals and Systems, 28 (2016), Art. 10, 21 pp. doi: 10.1007/s00498-016-0162-9. Google Scholar

[29]

F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, Physics, (2007), 312–350.Google Scholar

[30]

F. Mainardi, A. Mura and G. Pagnini, et al., Sub-diffusion equations of fractional order and their fundamental solutions, Mathematical Methods in Engineering. Springer, (2007), 23–55.Google Scholar

[31]

T. Mur and H. R. Henriquez, Relative controllability of linear systems of fractional order with delay, Mathematical Control and Related Fields, 5 (2015), 845-858. doi: 10.3934/mcrf.2015.5.845. Google Scholar

[32] I. Podlubny, Fractional Differential Equations, Academic Press, 1999. Google Scholar
[33]

Y. Povstenko, Fractional Thermoelasticity, Springer International Publishing, 2015. doi: 10.1007/978-3-319-15335-3. Google Scholar

[34]

A. J. Pritchard and A. Wirth, Unbounded control and observation systems and their duality, SIAM Journal on Control and Optimization, 16 (1978), 535-545. doi: 10.1137/0316036. Google Scholar

[35]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications, Gordon and Breach Science Publishers, Yverdon, 1993. Google Scholar

[36]

J. Tariboon, S. K. Ntouyas and C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Advances in Mathematical Physics, 2014 (2014), Art. ID 372749, 15 pp. doi: 10.1155/2014/372749. Google Scholar

[37]

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371 (2002), 461-580. doi: 10.1016/S0370-1573(02)00331-9. Google Scholar

[38]

C. Zeng and Y. Q. Chen, Optimal random search, fractional dynamics and fractional calculus, Fractional Calculus and Applied Analysis, 17 (2014), 321-332. doi: 10.2478/s13540-014-0171-7. Google Scholar

[39]

E. ZerrikA. Boutoulout and A. Kamal, Regional gradient controllability of parabolic systems, International Journal of Applied Mathematics and Computer Science, 9 (1999), 767-787. Google Scholar

[40]

E. ZerrikA. Kamal and A. Boutoulout, Regional gradient controllability and actuators, International Journal of Systems Science, 33 (2002), 239-246. doi: 10.1080/00207720110073163. Google Scholar

[41]

E. Zerrik and F. Ghafrani, Regional gradient-constrained control problem. Approaches and simulations, Journal of Dynamical and Control Systems, 9 (2003), 585-599. doi: 10.1023/A:1025652520034. Google Scholar

[42]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Computers and Mathematics with Applications, 59 (2010), 1063-1077. doi: 10.1016/j.camwa.2009.06.026. Google Scholar

[1]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060

[2]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[3]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[4]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[5]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204

[6]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic & Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

[7]

E.V. Presnov, Z. Agur. The Role Of Time Delays, Slow Processes And Chaos In Modulating The Cell-Cycle Clock. Mathematical Biosciences & Engineering, 2005, 2 (3) : 625-642. doi: 10.3934/mbe.2005.2.625

[8]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[9]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[10]

Binjie Li, Xiaoping Xie. Regularity of solutions to time fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3195-3210. doi: 10.3934/dcdsb.2018340

[11]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 609-627. doi: 10.3934/dcdss.2020033

[12]

Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata. Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences & Engineering, 2018, 15 (3) : 653-666. doi: 10.3934/mbe.2018029

[13]

Giuseppe Da Prato, Franco Flandoli. Some results for pathwise uniqueness in Hilbert spaces. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1789-1797. doi: 10.3934/cpaa.2014.13.1789

[14]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[15]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[16]

Kenichi Fujishiro, Yavar Kian. Determination of time dependent factors of coefficients in fractional diffusion equations. Mathematical Control & Related Fields, 2016, 6 (2) : 251-269. doi: 10.3934/mcrf.2016003

[17]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[18]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[19]

Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541

[20]

Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233

2018 Impact Factor: 1.292

Article outline

[Back to Top]