doi: 10.3934/mcrf.2019032

A moment approach for entropy solutions to nonlinear hyperbolic PDEs

1. 

CNRS, LAAS, Université de Toulouse, 7 avenue du colonel Roche, F-31400 Toulouse, France

2. 

Applied Mathematics and Plasma Physics Group and Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, NM 87545 Los Alamos, USA

3. 

Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 4, CZ-16206 Prague, Czechia

4. 

Institute of Mathematics of Toulouse (IMT), Université Paul Sabatier, 118 Route de Narbonne, F-31400, Toulouse, France

* Corresponding author: Swann Marx

Received  July 2018 Revised  February 2019 Published  April 2019

Fund Project: This work was partly funded by the ERC Advanced Grant Taming and by project 16-19526S of the Grant Agency of the Czech Republic. Part of the research of the second author was also supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project numbers 20180468ER and 20170508DR

We propose to solve hyperbolic partial differential equations (PDEs) with polynomial flux using a convex optimization strategy.This approach is based on a very weak notion of solution of the nonlinear equation,namely the measure-valued (mv) solution,satisfying a linear equation in the space of Borel measures.The aim of this paper is,first,to provide the conditions that ensure the equivalence between the two formulations and,second,to introduce a method which approximates the infinite-dimensional linear problem by a hierarchy of convex,finite-dimensional,semidefinite programming problems.This result is then illustrated on the celebrated Burgers equation.We also compare our results with an existing numerical scheme,namely the Godunov scheme.

Citation: Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2019032
References:
[1]

Y. Brenier, Solution by convex minimization of the Cauchy problem for hyperbolic systems of conservation laws with convex entropy, arXiv: 1710.03754, 2017.Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. Google Scholar

[3]

S. I. Chernyshenko, P. Goulart, D. Huang and A. Papachristodoulou, Polynomial sum of squares in fluid dynamics: A review with a look ahead, Phil. Trans. R. Soc. A, 372 (2014), 20130350, 18pp. doi: 10.1098/rsta.2013.0350. Google Scholar

[4]

M. Claeys and R. Sepulchre, Reconstructing Trajectories from the Moments of Occupation Measures, Proc. IEEE Conf. on Decision and Control, 2014.Google Scholar

[5]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-49451-6. Google Scholar

[6]

J. Dahl, Extending the Conic Optimizer in MOSEK with Semidefinite Cones, Proc. Intl. Symp. Math. Prog., Berlin, 2012.Google Scholar

[7]

C. DeLellisF. Otto and M. Westdickenberg, Minimal entropy conditions for Burgers equation, Quarterly of Applied Mathematics, 62 (2004), 687-700. doi: 10.1090/qam/2104269. Google Scholar

[8]

S. DemouliniD. M. A. Stuart and A. E. Tzavaras, Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics, Archive for Rational Mechanics and Analysis, 205 (2012), 927-961. doi: 10.1007/s00205-012-0523-6. Google Scholar

[9]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, Journal of Scientific Computing, 16 (2001), 479-524. doi: 10.1023/A:1013298408777. Google Scholar

[10]

R. J. DiPerna, Measure-valued solutions to conservation laws, Archive for Rational Mechanics and Analysis, 88 (1985), 223-270. doi: 10.1007/BF00752112. Google Scholar

[11]

L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010. doi: 10.1090/gsm/019. Google Scholar

[12] H. O. Fattorini, Infinite Dimensional Optimization and Control Theory,, Cambridge University Press, 1999. doi: 10.1017/CBO9780511574795. Google Scholar
[13]

E. Feireisl, M. Lukáčová-Medvid'ová and H. Mizerová., Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions, arXiv: 1803.08401, 2018.Google Scholar

[14]

U. S. FjordholmS. Mishra and E. Tadmor., On the computation of measured-valued solutions, Acta Numerica, 25 (2016), 567-679. Google Scholar

[15]

U. S. FjordholmR. KäppeliS. Mishra and E. Tadmor, Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws, Foundations of Computational Mathematics, 17 (2017), 763-827. doi: 10.1007/s10208-015-9299-z. Google Scholar

[16]

U. S. FjordholmK. Lye and S. Mishra, Numerical approximation of statistical solutions of scalar conservation laws, SIAM Journal on Numerical Analysis, 56 (2018), 2989-3009. doi: 10.1137/17M1154874. Google Scholar

[17]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, 89 (1959), 271-306. Google Scholar

[18]

D. Goluskin, G. Fantuzzi., Bounds on mean energy in the Kuramoto-Sivashinsky equation computed using semidefinite programming., arXiv: 1802.08240, 2018.Google Scholar

[19]

L. Gosse and E. Zuazua, Filtered gradient algorithms for inverse design problems of one-dimensional Burgers equation, Innovative Algorithms and Analysis, 197-227, Springer INdAM Ser., 16, Springer, Cham, 2017. Google Scholar

[20]

D. Handelman, Representing polynomials by positive linear functions on compact convex polyhedra, Pacific J. Math., 132 (1988), 35-62. Google Scholar

[21]

D. Henrion and M. Korda, Convex computation of the region of attraction of polynomial control systems, IEEE Trans. Autom. Control, 59 (2014), 297-312. doi: 10.1109/TAC.2013.2283095. Google Scholar

[22]

D. HenrionJ. B. Lasserre and J. Löfberg, Gloptipoly 3: Moments, optimization and semidefinite programming, Optimization Methods & Software, 24 (2009), 761-779. doi: 10.1080/10556780802699201. Google Scholar

[23]

D. Henrion and E. Pauwels, Linear conic optimization for nonlinear optimal control, Advances and Trends in Optimization with Engineering Applications, 121-133, MOS-SIAM Ser. Optim., 24, SIAM, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974683.ch10. Google Scholar

[24]

M. Korda, D. Henrion and J. B. Lasserre, Moments and convex optimization for analysis and control of nonlinear partial differential equations, arXiv: 1804.07565, 2018.Google Scholar

[25]

S. N. Kružkov, First order quasilinear equations in several independent variables, Mathematics of the USSR-Sbornik, 10 (1970), 217-243. Google Scholar

[26] J. B. Lasserre, Moments, Positive Polynomials and Their Applications,, Imperial College Press, 2010. Google Scholar
[27]

J. B. LasserreD. HenrionC. Prieur and E. Trélat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM Journal on Control and Optimization, 47 (2008), 1643-1666. doi: 10.1137/070685051. Google Scholar

[28]

P. Lax, Shock waves and entropy, Contributions to nonlinear Functional Analysis, 603-634, Academic Press, New York, 1971. Google Scholar

[29]

P. G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Springer Science & Business Media, 2002. doi: 10.1007/978-3-0348-8150-0. Google Scholar

[30] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge university press, 2002. doi: 10.1017/CBO9780511791253. Google Scholar
[31]

V. Magron and C. Prieur, Optimal Control of Linear PDEs using Occupation Measures and SDP Relaxations, IMA Journal of Mathematical Control and Information, 2018.Google Scholar

[32] J. MálekJ. NečasM. Rokyta and M. Růžička, Weak and Measure-valued Solutions to Evolutionary PDEs,, CRC Press, 1996. doi: 10.1007/978-1-4899-6824-1. Google Scholar
[33]

M. Mevissen, J. B. Lasserre and D. Henrion, Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations, Proc. IFAC World Congress on Automatic Control, 2011.Google Scholar

[34]

E. Y. Panov, Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Mathematical Notes, 55 (1994), 517-525. doi: 10.1007/BF02110380. Google Scholar

[35]

M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathematics Journal, 42 (1993), 969-984. doi: 10.1512/iumj.1993.42.42045. Google Scholar

[36]

J. Rubio, The global control of shock waves, Nonlinear Theory of Generalized Functions, 355-369, Erwin Schrödinger Institute, Vienna, 1997.Google Scholar

[37] D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves,, Cambridge University Press, 1999. doi: 10.1017/CBO9780511612374. Google Scholar
[38]

L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear Partial Differential Equations, 111 (1983), 263-285. Google Scholar

[39]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, 2011. Google Scholar

show all references

References:
[1]

Y. Brenier, Solution by convex minimization of the Cauchy problem for hyperbolic systems of conservation laws with convex entropy, arXiv: 1710.03754, 2017.Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. Google Scholar

[3]

S. I. Chernyshenko, P. Goulart, D. Huang and A. Papachristodoulou, Polynomial sum of squares in fluid dynamics: A review with a look ahead, Phil. Trans. R. Soc. A, 372 (2014), 20130350, 18pp. doi: 10.1098/rsta.2013.0350. Google Scholar

[4]

M. Claeys and R. Sepulchre, Reconstructing Trajectories from the Moments of Occupation Measures, Proc. IEEE Conf. on Decision and Control, 2014.Google Scholar

[5]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-49451-6. Google Scholar

[6]

J. Dahl, Extending the Conic Optimizer in MOSEK with Semidefinite Cones, Proc. Intl. Symp. Math. Prog., Berlin, 2012.Google Scholar

[7]

C. DeLellisF. Otto and M. Westdickenberg, Minimal entropy conditions for Burgers equation, Quarterly of Applied Mathematics, 62 (2004), 687-700. doi: 10.1090/qam/2104269. Google Scholar

[8]

S. DemouliniD. M. A. Stuart and A. E. Tzavaras, Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics, Archive for Rational Mechanics and Analysis, 205 (2012), 927-961. doi: 10.1007/s00205-012-0523-6. Google Scholar

[9]

B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, Journal of Scientific Computing, 16 (2001), 479-524. doi: 10.1023/A:1013298408777. Google Scholar

[10]

R. J. DiPerna, Measure-valued solutions to conservation laws, Archive for Rational Mechanics and Analysis, 88 (1985), 223-270. doi: 10.1007/BF00752112. Google Scholar

[11]

L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010. doi: 10.1090/gsm/019. Google Scholar

[12] H. O. Fattorini, Infinite Dimensional Optimization and Control Theory,, Cambridge University Press, 1999. doi: 10.1017/CBO9780511574795. Google Scholar
[13]

E. Feireisl, M. Lukáčová-Medvid'ová and H. Mizerová., Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions, arXiv: 1803.08401, 2018.Google Scholar

[14]

U. S. FjordholmS. Mishra and E. Tadmor., On the computation of measured-valued solutions, Acta Numerica, 25 (2016), 567-679. Google Scholar

[15]

U. S. FjordholmR. KäppeliS. Mishra and E. Tadmor, Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws, Foundations of Computational Mathematics, 17 (2017), 763-827. doi: 10.1007/s10208-015-9299-z. Google Scholar

[16]

U. S. FjordholmK. Lye and S. Mishra, Numerical approximation of statistical solutions of scalar conservation laws, SIAM Journal on Numerical Analysis, 56 (2018), 2989-3009. doi: 10.1137/17M1154874. Google Scholar

[17]

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, 89 (1959), 271-306. Google Scholar

[18]

D. Goluskin, G. Fantuzzi., Bounds on mean energy in the Kuramoto-Sivashinsky equation computed using semidefinite programming., arXiv: 1802.08240, 2018.Google Scholar

[19]

L. Gosse and E. Zuazua, Filtered gradient algorithms for inverse design problems of one-dimensional Burgers equation, Innovative Algorithms and Analysis, 197-227, Springer INdAM Ser., 16, Springer, Cham, 2017. Google Scholar

[20]

D. Handelman, Representing polynomials by positive linear functions on compact convex polyhedra, Pacific J. Math., 132 (1988), 35-62. Google Scholar

[21]

D. Henrion and M. Korda, Convex computation of the region of attraction of polynomial control systems, IEEE Trans. Autom. Control, 59 (2014), 297-312. doi: 10.1109/TAC.2013.2283095. Google Scholar

[22]

D. HenrionJ. B. Lasserre and J. Löfberg, Gloptipoly 3: Moments, optimization and semidefinite programming, Optimization Methods & Software, 24 (2009), 761-779. doi: 10.1080/10556780802699201. Google Scholar

[23]

D. Henrion and E. Pauwels, Linear conic optimization for nonlinear optimal control, Advances and Trends in Optimization with Engineering Applications, 121-133, MOS-SIAM Ser. Optim., 24, SIAM, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974683.ch10. Google Scholar

[24]

M. Korda, D. Henrion and J. B. Lasserre, Moments and convex optimization for analysis and control of nonlinear partial differential equations, arXiv: 1804.07565, 2018.Google Scholar

[25]

S. N. Kružkov, First order quasilinear equations in several independent variables, Mathematics of the USSR-Sbornik, 10 (1970), 217-243. Google Scholar

[26] J. B. Lasserre, Moments, Positive Polynomials and Their Applications,, Imperial College Press, 2010. Google Scholar
[27]

J. B. LasserreD. HenrionC. Prieur and E. Trélat, Nonlinear optimal control via occupation measures and LMI relaxations, SIAM Journal on Control and Optimization, 47 (2008), 1643-1666. doi: 10.1137/070685051. Google Scholar

[28]

P. Lax, Shock waves and entropy, Contributions to nonlinear Functional Analysis, 603-634, Academic Press, New York, 1971. Google Scholar

[29]

P. G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Springer Science & Business Media, 2002. doi: 10.1007/978-3-0348-8150-0. Google Scholar

[30] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge university press, 2002. doi: 10.1017/CBO9780511791253. Google Scholar
[31]

V. Magron and C. Prieur, Optimal Control of Linear PDEs using Occupation Measures and SDP Relaxations, IMA Journal of Mathematical Control and Information, 2018.Google Scholar

[32] J. MálekJ. NečasM. Rokyta and M. Růžička, Weak and Measure-valued Solutions to Evolutionary PDEs,, CRC Press, 1996. doi: 10.1007/978-1-4899-6824-1. Google Scholar
[33]

M. Mevissen, J. B. Lasserre and D. Henrion, Moment and SDP relaxation techniques for smooth approximations of problems involving nonlinear differential equations, Proc. IFAC World Congress on Automatic Control, 2011.Google Scholar

[34]

E. Y. Panov, Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy, Mathematical Notes, 55 (1994), 517-525. doi: 10.1007/BF02110380. Google Scholar

[35]

M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana University Mathematics Journal, 42 (1993), 969-984. doi: 10.1512/iumj.1993.42.42045. Google Scholar

[36]

J. Rubio, The global control of shock waves, Nonlinear Theory of Generalized Functions, 355-369, Erwin Schrödinger Institute, Vienna, 1997.Google Scholar

[37] D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves,, Cambridge University Press, 1999. doi: 10.1017/CBO9780511612374. Google Scholar
[38]

L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear Partial Differential Equations, 111 (1983), 263-285. Google Scholar

[39]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, 2011. Google Scholar

Figure 1.  Approximation of the solution $ y(t,x) $ obtained with our GMP approach, in the case of a shock
Figure 2.  Approximation of the solution $ y(t,x) $ obtained with our GMP approach, in the case of a rarefaction wave
Table 1.  Approximation of $ y(0.75,x) $ with Godunov and GMP
$ x $ 0.1850 0.1855 0.1860 0.1865 0.1870 0.1875 0.1880 0.1885
Godunov 0.9999 0.9991 0.9936 0.9580 0.7647 0.2724 0.0123 0.0000
GMP 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
$ x $ 0.1850 0.1855 0.1860 0.1865 0.1870 0.1875 0.1880 0.1885
Godunov 0.9999 0.9991 0.9936 0.9580 0.7647 0.2724 0.0123 0.0000
GMP 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
[1]

María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331

[2]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[3]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[4]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[5]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[6]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[7]

María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038

[8]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[9]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[10]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[11]

Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749

[12]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[13]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[14]

Gianluca Crippa, Laura V. Spinolo. An overview on some results concerning the transport equation and its applications to conservation laws. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1283-1293. doi: 10.3934/cpaa.2010.9.1283

[15]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[16]

Rinaldo M. Colombo, Francesca Marcellini, Elena Rossi. Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results. Networks & Heterogeneous Media, 2016, 11 (1) : 49-67. doi: 10.3934/nhm.2016.11.49

[17]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[18]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[19]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[20]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

2018 Impact Factor: 1.292

Article outline

Figures and Tables

[Back to Top]