# American Institute of Mathematical Sciences

doi: 10.3934/mcrf.2019028

## A Poincaré-Bendixson theorem for hybrid systems

 1 Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI, USA 2 Instituto de Ciencias Mathemáticas (CSIC-UAM-UC3M-UCM), C/Nicolás Cabrera 13-15, 28049, Madrid, Spain

* Corresponding author: William Clark

Received  April 2018 Published  April 2019

Fund Project: W. Clark was supported by NSF grant DMS-1613819. A. Bloch was supported by NSF grant DMS-1613819 and AFOSR grant FA 9550-18-0028. L. Colombo was partially supported by Ministerio de Economia, Industria y Competitividad (MINEICO, Spain) under grant MTM2016-76702-P and "Severo Ochoa Programme for Centres of Excellence" in R & D (SEV-2015-0554)

The Poincaré-Bendixson theorem plays an important role in the study of the qualitative behavior of dynamical systems on the plane; it describes the structure of limit sets in such systems. We prove a version of the Poincaré-Bendixson Theorem for two dimensional hybrid dynamical systems and describe a method for computing the derivative of the Poincaré return map, a useful object for the stability analysis of hybrid systems. We also prove a Poincaré-Bendixson Theorem for a class of one dimensional hybrid dynamical systems.

Citation: William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2019028
##### References:

show all references

##### References:
The orbit of the periodic orbit for the system given by Theorem 5.2
The vector $\delta x = F(y)\delta y + f(x)\delta t$, where the horizontal line is the tangent to $S$ at the point $x$
1000 cycles of the flow from §5.1.1
Displaying the locations of the jumps after performing 1000 iterations of the system in §5.1.2
The rimless wheel
Left: The lighter region indicates values of $\alpha$ and $\delta$ where there exists a limit cycle as predicted by equation (34). Right: The lower region is the domain of attraction for the limit cycle, whose existence is guaranteed by equation (34)
 [1] D. P. Demuner, M. Federson, C. Gutierrez. The Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 495-509. doi: 10.3934/dcds.2009.25.495 [2] Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541 [3] Thomas I. Seidman, Olaf Klein. Periodic solutions of isotone hybrid systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 483-493. doi: 10.3934/dcdsb.2013.18.483 [4] Michel L. Lapidus, Robert G. Niemeyer. Sequences of compatible periodic hybrid orbits of prefractal Koch snowflake billiards. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3719-3740. doi: 10.3934/dcds.2013.33.3719 [5] João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641 [6] Paolo Perfetti. An infinite-dimensional extension of a Poincaré's result concerning the continuation of periodic orbits. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 401-418. doi: 10.3934/dcds.1997.3.401 [7] Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109 [8] V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263 [9] Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control & Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101 [10] Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009 [11] Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261 [12] Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25 [13] Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239 [14] Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 [15] V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901 [16] Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473 [17] Armengol Gasull, Héctor Giacomini, Maite Grau. On the stability of periodic orbits for differential systems in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 495-509. doi: 10.3934/dcdsb.2008.10.495 [18] Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15 [19] Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151 [20] Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601

2018 Impact Factor: 1.292