September  2018, 8(3&4): 583-605. doi: 10.3934/mcrf.2018024

General boundary value problems of the Korteweg-de Vries equation on a bounded domain

1. 

Departamento de Matemática, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-545, Brazil

2. 

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA

3. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, USA

4. 

Yangtze Center of Mathematics, Sichuan University, Chengdu 610064, China

* Corresponding author: Bing-Yu Zhang

The paper is dedicated to Jiongmin Yong for his 60th birthday.
The authors thank anonymous referees for many helpful comments, corrections and suggestions

Received  March 2017 Revised  October 2017 Published  September 2018

In this paper we consider the initial boundary value problem of the Korteweg-de Vries equation posed on a finite interval
$\begin{equation} u_t+u_x+u_{xxx}+uu_x = 0, ~~~~~ u(x, 0) = φ(x), ~~~~~ 0 < x < L, \ t>0~~~~~(0.1)\end{equation}$
subject to the nonhomogeneous boundary conditions,
$\begin{equation} B_1u = h_1(t), ~~~~~B_2 u = h_2 (t), ~~~~~ B_3 u = h_3 (t) ~~~~~t>0~~~~~(0.2) \end{equation} $
where
$ B_i u = \sum\limits_{j = 0}^2 \left(a_{ij} \partial ^j_x u(0, t) + b_{ij}\partial ^j_x u(L, t)\right), ~~~~~i = 1, 2, 3, $
and
$a_{ij}, \ b_{ij}$
(
$j = 0, 1, 2$
and
$ i = 1, 2, 3$
) are real constants. Under some general assumptions imposed on the coefficients
$a_{ij}, \ b_{ij}$
, the IBVP (0.1)-(0.2) is shown to be locally well-posed in the space
$H^s (0, L)$
for any
$s \ge 0$
with
$φ ∈ H^s (0, L)$
and boundary values
$h_j$
,
$j = 1, 2, 3$
, belonging to some appropriate spaces with optimal regularity.
Citation: Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control & Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024
References:
[1]

J. L. Bona and L. R. Scott, Solutions of the Korteweg-de Vries equation in fractional order Sobelev Spaces, Duke Math. J., 43 (1976), 87-99. doi: 10.1215/S0012-7094-76-04309-X. Google Scholar

[2]

J. L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London A, 278 (1975), 555-601. doi: 10.1098/rsta.1975.0035. Google Scholar

[3]

J. L. BonaS. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary- value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc., 354 (2002), 427-490. doi: 10.1090/S0002-9947-01-02885-9. Google Scholar

[4]

J. L. BonaS. M. Sun and B.-Y. Zhang, Forced Oscillations of a Damped Korteweg-de Vries Equation in a quarter plane, Commun. Contemp. Math., 5 (2003), 369-400. doi: 10.1142/S021919970300104X. Google Scholar

[5]

J. L. BonaS. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries Equation on a finite domain, Comm. Partial Differential Equations, 28 (2003), 1391-1436. doi: 10.1081/PDE-120024373. Google Scholar

[6]

J. L. BonaS. M. Sun and B.-Y. Zhang, Conditional and unconditional well posedness of nonlinear evolution equations, Adv. Differential Equations, 9 (2004), 241-265. Google Scholar

[7]

J. L. BonaS. M. Sun and B.-Y. Zhang, Boundary Smoothing Properties of the Korteweg-de Vries Equation in a Quarter Plane and Applications, Dyn. Partial Differ. Equ., 3 (2006), 1-69. doi: 10.4310/DPDE.2006.v3.n1.a1. Google Scholar

[8]

J. L. BonaS. M. Sun and B.-Y. Zhang, A nonhomogeneous problem for the Korteweg-de Vries equation in a bounded domain Ⅱ, J. Diff. Eq., 247 (2009), 2558-2596. doi: 10.1016/j.jde.2009.07.010. Google Scholar

[9]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part Ⅰ: Shrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156. doi: 10.1007/BF01896020. Google Scholar

[10]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part Ⅱ: the KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688. Google Scholar

[11]

J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math., 3 (1997), 115-159. doi: 10.1007/s000290050008. Google Scholar

[12]

B. A. Bubnov, Generalized boundary value problems for the Korteweg-de Vries equation in bounded domain, Differential Equations, 15 (1979), 17-21. Google Scholar

[13]

E. Cerpa, Control of a Korteweg-de Vries equation: A tutorial, Math. Control Relat. Field, 4 (2014), 45-99. doi: 10.3934/mcrf.2014.4.45. Google Scholar

[14]

T. Colin and J.-M. Ghidaglia, Un probléme aux limites pour l'équation de Korteweg-de Vries sur un intervalle boné, (French) Journes Equations aux Drives Partielles, No. Ⅲ, école Polytech., Palaiseau, (1997), 10 pp. Google Scholar

[15]

T. Colin and J.-M. Ghidaglia, Un probléme mixte pour l'équation de Korteweg-de Vries sur un intervalle boné. (French), C. R. Acad. Sci. Paris. Sér. I Math., 324 (1997), 599-603. doi: 10.1016/S0764-4442(99)80397-8. Google Scholar

[16]

T. Colin and J.-M. Ghidaglia, An initial-boundary-value problem fo the Korteweg-de Vries Equation posed on a finite interval, Adv. Differential Equations, 6 (2001), 1463-1492. Google Scholar

[17]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness results for periodic and non-periodic KdV and modified KdV on R and T, J. Amer. Math. Soc., 16 (2003), 705-749. doi: 10.1090/S0894-0347-03-00421-1. Google Scholar

[18]

A. V. Faminskii, The Cauchy problem and the mixed problem in the half strip for equation of Korteweg-de Vries type, Dinamika Sploshn. Sredy, 63 (1983), 152-158. Google Scholar

[19]

A. V. Faminskii, A mixed problem in a semistrip for the Korteweg-de Vries equation and its generalizations, (Russian) Dinamika Sploshn. Sredy, 258 (1988), 54-94; English transl. in Trans. Moscow Math. Soc., 51 (1989), 53-91.Google Scholar

[20]

A. V. Faminskii, Mixed problms fo the Korteweg-de Vries equation, Sbornik: Mathematics, 190 (1999), 903-935. doi: 10.1070/SM1999v190n06ABEH000408. Google Scholar

[21]

J. Holmer, The Initial-Boundary Value Problem for the Korteweg-de Vries Equation, Comm. Partial Differential Equations, 31 (2006), 1151-1190. doi: 10.1080/03605300600718503. Google Scholar

[22]

C. JiaI. Rivas and B.-Y. Zhang, Lower regularity solutions for a class of non-homogeneous boundary values of the Kortweg-de Vries equation on a finite domain, Adv. Differential Equations, 19 (2014), 559-584. Google Scholar

[23]

T. Kato, On the Korteweg-de Vries Equation, Manuscripta mathematica, 28 (1979), 89-99. doi: 10.1007/BF01647967. Google Scholar

[24]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations, Advances in Mathematics Supplementary Studies, 8 (1983), 93-128. Google Scholar

[25]

C. KenigG. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Math. J., 59 (1989), 585-610. doi: 10.1215/S0012-7094-89-05927-9. Google Scholar

[26]

C. KenigG. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69. doi: 10.1512/iumj.1991.40.40003. Google Scholar

[27]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347. doi: 10.1090/S0894-0347-1991-1086966-0. Google Scholar

[28]

C. KenigG. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21. doi: 10.1215/S0012-7094-93-07101-3. Google Scholar

[29]

C. KenigG. Ponce and L. Vega, Well-Posedness and scattering results for teh generalized Korteweg-de Vries equations via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405. Google Scholar

[30]

C. KenigG. Ponce and L. Vega, A Bilinear Estimate with Applicatios to the KdV Equation, J. Amer. Math. Soc., 9 (1996), 573-603. Google Scholar

[31]

E. F. Kramer and B.-Y. Zhang, Nonhomogeneous boundary value problems for the Korteweg-de Vries equation on a bounded domain, J. Syst. Sci. Complex, 23 (2010), 499-526. doi: 10.1007/s11424-010-0143-x. Google Scholar

[32]

E. F. KramerI. Rivas and B.-Y. Zhang, Well-posedness of a class of non-homogeneous boundary value problem of the Korteweg-de Vries equation on a finite domain, ESAIM Control Optim. Calc. Var., 19 (2013), 358-384. doi: 10.1051/cocv/2012012. Google Scholar

[33]

I. RivasM. Usman and B.-Y. Zhang, Global Well-posedness and Asymptotic Behavior of a Class of Initial-Boundary-Value Problem of the Korteweg-de Vries Equation on a Finite Domain, Math. Control Relat. Fields, 1 (2011), 61-81. doi: 10.3934/mcrf.2011.1.61. Google Scholar

[34]

L. Tartar, Interpolation non linèaire et régularité, J. Funct. Anal., 9 (1972), 469-489. Google Scholar

show all references

References:
[1]

J. L. Bona and L. R. Scott, Solutions of the Korteweg-de Vries equation in fractional order Sobelev Spaces, Duke Math. J., 43 (1976), 87-99. doi: 10.1215/S0012-7094-76-04309-X. Google Scholar

[2]

J. L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London A, 278 (1975), 555-601. doi: 10.1098/rsta.1975.0035. Google Scholar

[3]

J. L. BonaS. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary- value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc., 354 (2002), 427-490. doi: 10.1090/S0002-9947-01-02885-9. Google Scholar

[4]

J. L. BonaS. M. Sun and B.-Y. Zhang, Forced Oscillations of a Damped Korteweg-de Vries Equation in a quarter plane, Commun. Contemp. Math., 5 (2003), 369-400. doi: 10.1142/S021919970300104X. Google Scholar

[5]

J. L. BonaS. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries Equation on a finite domain, Comm. Partial Differential Equations, 28 (2003), 1391-1436. doi: 10.1081/PDE-120024373. Google Scholar

[6]

J. L. BonaS. M. Sun and B.-Y. Zhang, Conditional and unconditional well posedness of nonlinear evolution equations, Adv. Differential Equations, 9 (2004), 241-265. Google Scholar

[7]

J. L. BonaS. M. Sun and B.-Y. Zhang, Boundary Smoothing Properties of the Korteweg-de Vries Equation in a Quarter Plane and Applications, Dyn. Partial Differ. Equ., 3 (2006), 1-69. doi: 10.4310/DPDE.2006.v3.n1.a1. Google Scholar

[8]

J. L. BonaS. M. Sun and B.-Y. Zhang, A nonhomogeneous problem for the Korteweg-de Vries equation in a bounded domain Ⅱ, J. Diff. Eq., 247 (2009), 2558-2596. doi: 10.1016/j.jde.2009.07.010. Google Scholar

[9]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part Ⅰ: Shrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156. doi: 10.1007/BF01896020. Google Scholar

[10]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part Ⅱ: the KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262. doi: 10.1007/BF01895688. Google Scholar

[11]

J. Bourgain, Periodic Korteweg de Vries equation with measures as initial data, Selecta Math., 3 (1997), 115-159. doi: 10.1007/s000290050008. Google Scholar

[12]

B. A. Bubnov, Generalized boundary value problems for the Korteweg-de Vries equation in bounded domain, Differential Equations, 15 (1979), 17-21. Google Scholar

[13]

E. Cerpa, Control of a Korteweg-de Vries equation: A tutorial, Math. Control Relat. Field, 4 (2014), 45-99. doi: 10.3934/mcrf.2014.4.45. Google Scholar

[14]

T. Colin and J.-M. Ghidaglia, Un probléme aux limites pour l'équation de Korteweg-de Vries sur un intervalle boné, (French) Journes Equations aux Drives Partielles, No. Ⅲ, école Polytech., Palaiseau, (1997), 10 pp. Google Scholar

[15]

T. Colin and J.-M. Ghidaglia, Un probléme mixte pour l'équation de Korteweg-de Vries sur un intervalle boné. (French), C. R. Acad. Sci. Paris. Sér. I Math., 324 (1997), 599-603. doi: 10.1016/S0764-4442(99)80397-8. Google Scholar

[16]

T. Colin and J.-M. Ghidaglia, An initial-boundary-value problem fo the Korteweg-de Vries Equation posed on a finite interval, Adv. Differential Equations, 6 (2001), 1463-1492. Google Scholar

[17]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness results for periodic and non-periodic KdV and modified KdV on R and T, J. Amer. Math. Soc., 16 (2003), 705-749. doi: 10.1090/S0894-0347-03-00421-1. Google Scholar

[18]

A. V. Faminskii, The Cauchy problem and the mixed problem in the half strip for equation of Korteweg-de Vries type, Dinamika Sploshn. Sredy, 63 (1983), 152-158. Google Scholar

[19]

A. V. Faminskii, A mixed problem in a semistrip for the Korteweg-de Vries equation and its generalizations, (Russian) Dinamika Sploshn. Sredy, 258 (1988), 54-94; English transl. in Trans. Moscow Math. Soc., 51 (1989), 53-91.Google Scholar

[20]

A. V. Faminskii, Mixed problms fo the Korteweg-de Vries equation, Sbornik: Mathematics, 190 (1999), 903-935. doi: 10.1070/SM1999v190n06ABEH000408. Google Scholar

[21]

J. Holmer, The Initial-Boundary Value Problem for the Korteweg-de Vries Equation, Comm. Partial Differential Equations, 31 (2006), 1151-1190. doi: 10.1080/03605300600718503. Google Scholar

[22]

C. JiaI. Rivas and B.-Y. Zhang, Lower regularity solutions for a class of non-homogeneous boundary values of the Kortweg-de Vries equation on a finite domain, Adv. Differential Equations, 19 (2014), 559-584. Google Scholar

[23]

T. Kato, On the Korteweg-de Vries Equation, Manuscripta mathematica, 28 (1979), 89-99. doi: 10.1007/BF01647967. Google Scholar

[24]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations, Advances in Mathematics Supplementary Studies, 8 (1983), 93-128. Google Scholar

[25]

C. KenigG. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Math. J., 59 (1989), 585-610. doi: 10.1215/S0012-7094-89-05927-9. Google Scholar

[26]

C. KenigG. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69. doi: 10.1512/iumj.1991.40.40003. Google Scholar

[27]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347. doi: 10.1090/S0894-0347-1991-1086966-0. Google Scholar

[28]

C. KenigG. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21. doi: 10.1215/S0012-7094-93-07101-3. Google Scholar

[29]

C. KenigG. Ponce and L. Vega, Well-Posedness and scattering results for teh generalized Korteweg-de Vries equations via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405. Google Scholar

[30]

C. KenigG. Ponce and L. Vega, A Bilinear Estimate with Applicatios to the KdV Equation, J. Amer. Math. Soc., 9 (1996), 573-603. Google Scholar

[31]

E. F. Kramer and B.-Y. Zhang, Nonhomogeneous boundary value problems for the Korteweg-de Vries equation on a bounded domain, J. Syst. Sci. Complex, 23 (2010), 499-526. doi: 10.1007/s11424-010-0143-x. Google Scholar

[32]

E. F. KramerI. Rivas and B.-Y. Zhang, Well-posedness of a class of non-homogeneous boundary value problem of the Korteweg-de Vries equation on a finite domain, ESAIM Control Optim. Calc. Var., 19 (2013), 358-384. doi: 10.1051/cocv/2012012. Google Scholar

[33]

I. RivasM. Usman and B.-Y. Zhang, Global Well-posedness and Asymptotic Behavior of a Class of Initial-Boundary-Value Problem of the Korteweg-de Vries Equation on a Finite Domain, Math. Control Relat. Fields, 1 (2011), 61-81. doi: 10.3934/mcrf.2011.1.61. Google Scholar

[34]

L. Tartar, Interpolation non linèaire et régularité, J. Funct. Anal., 9 (1972), 469-489. Google Scholar

[1]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[2]

Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104

[3]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[4]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[5]

Nassif Ghoussoub. Superposition of selfdual functionals in non-homogeneous boundary value problems and differential systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 187-220. doi: 10.3934/dcds.2008.21.187

[6]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[7]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[8]

Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217

[9]

Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011

[10]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[11]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[12]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[13]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[14]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[15]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[16]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[17]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[18]

Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185

[19]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[20]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (54)
  • HTML views (271)
  • Cited by (0)

[Back to Top]