• Previous Article
    Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function
  • MCRF Home
  • This Issue
  • Next Article
    Investment and consumption in regime-switching models with proportional transaction costs and log utility
September  2017, 7(3): 449-464. doi: 10.3934/mcrf.2017016

Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative

Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland

* Corresponding author: Rafał Kamocki

Received  February 2016 Revised  November 2016 Published  July 2017

Fund Project: The project was financed with funds of National Science Centre, granted on the basis of decision DEC-2011/01/B/ST7/03426

In the paper, a nonlinear control system containing the Riemann-Liouville derivative of order $α∈(0, 1)$ with a nonlinear integral performance index is studied. We discuss the existence of optimal solutions to such problem under some convexity assumption. Our study relies on the implicit function theorem for multivalued mappings.

Citation: Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016
References:
[1]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam., 38 (2004), 323-337. doi: 10.1007/s11071-004-3764-6.

[2]

T. Akbarian and M. Keyanpour, A new approach to the numerical solution of fractional order optimal control problems, Applications and Applied Mathematics, 8 (2013), 523-534.

[3]

R. AlmeidaS. Pooseh and D. F. M. Torres, Fractional variational problems depending on indefinite integrals, Nonlinear Anal., 75 (2012), 1009-1025. doi: 10.1016/j.na.2011.02.028.

[4]

R. Almeida and D. F. M. Torres, Calculus of variations with fractional derivatives and fractional integrals, Appl. Math. Lett., 22 (2009), 1816-1820. doi: 10.1016/j.aml.2009.07.002.

[5]

R. L. Bagley and P. J. Torvik, On the fractional calculus model of viscoelastic behaviour, Journal of Rheology, 30 (1986), 133-155.

[6]

S. Banach, Teoria Operacyj I, Warsaw, 1931 (in Polish).

[7]

L. Bourdin and D. Idczak, Fractional fundamental lemma and fractional integration by parts formula -Applications to critical points of Bolza functionals and to linear boundary value problems, Adv. Differential Equations, 20 (2015), 213-232.

[8]

L. BourdinT. Odzijewicz and D. F. Torres, Existence of minimizers for fractional variational problems containing Caputo derivatives, Advances in Dynamical Systems and Applications, 8 (2013), 3-12.

[9]

J. Cresson, Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 48 (2007), 033504, 34pp. doi: 10.1063/1.2483292.

[10]

A. Dzielinski, G. Sarwas and D. Sierociuk, Comparison and validation of integer and fractional order ultracapacitor models, Advances in Difference Equations, 2011 (2011), 15pp.

[11]

A. DzielinskiD. Sierociuk and G. Sarwas, Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences: Technical Sciences, 58 (2010), 583-592. doi: 10.2478/v10175-010-0059-6.

[12]

G. S. F. Frederico and D. F. M. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl., 334 (2007), 834-846. doi: 10.1016/j.jmaa.2007.01.013.

[13]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam., 53 (2008), 215-222. doi: 10.1007/s11071-007-9309-z.

[14]

G. S. F. Frederico and D. F. M. Torres, Fractional Noether's theorem in the Riesz-Caputo sense, Appl. Math. Comput., 217 (2010), 1023-1033. doi: 10.1016/j.amc.2010.01.100.

[15]

F. Ghomanjani, A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations, Journal of the Egyptian Mathematical Society, 24 (2016), 638-643. doi: 10.1016/j.joems.2015.12.003.

[16]

R. Herrmann, Fractional Calculus. An Introduction for Physicists, Second edition. World Scientific Publishing Co. Pte. Ltd. , Hackensack, NJ, 2014. doi: 10.1142/8934.

[17]

R. Hilfer, Applications of Fractional Calculus in Physics, 463 pages, World Sci. Publishing, River Edge, NJ, 2000. doi: 10.1142/9789812817747.

[18]

D. Idczak and M. Majewski, Fractional fundamental lemma of order $α∈ (n-\frac{1}{2}, n)$ with $n∈\mathbb{N}$, $n≥q 2$, Dynamic Systems and Applications, 21 (2012), 251-268.

[19]

D. Idczak and S. Walczak, A fractional imbedding theorem, Fract.Calc.Appl.Anal., 15 (2012), 418-425. doi: 10.2478/s13540-012-0030-3.

[20]

A. D. Ioffe and V. M. Tikchomirov, Theory of Extremal Problems, North-Holland, 1979.

[21]

Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems, Struct. Multidisc. Optim., 38 (2009), 571-581. doi: 10.1007/s00158-008-0307-7.

[22]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences, 37 (2014), 1668-1686. doi: 10.1002/mma.2928.

[23]

R. Kamocki, On the existence of optimal solutions to fractional optimal control problems, Appl. Math. Comput., 235 (2014), 94-104. doi: 10.1016/j.amc.2014.02.086.

[24]

M. M. Khader and A. S. Hendy, An efficient numerical scheme for solving fractional optimal control problems, International Journal of Nonlinear Science, 14 (2012), 287-296.

[25]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 523 pages, Elsevier, Amsterdam, 2006.

[26]

M. Kisielewicz, Differential Inclusions and Optimal Control, 240 pages, PWN with Kluwer Academic Puplishers, Warsaw-Dordrecht, 1991.

[27]

M. Klimek, On Solutions of Linear Fractional Differential Equations of A Variational Type, The Publishing Office of Czestochowa University of Technology, Czestochowa, 2009.

[28]

T. A. M. Langlands, Solution of a modified fractional diffusion equation, Physica a Statistical Mechanics and its Applications, 367 (2006), 136-144. doi: 10.1016/j.physa.2005.12.012.

[29]

A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians, Applied Mathematics Letters, 25 (2012), 1941-1946. doi: 10.1016/j.aml.2012.03.006.

[30]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations, 300 pages, Imperial College Press, London, 2012. doi: 10.1142/p871.

[31]

A. B. Malinowska and D. F. M. Torres, Multiobjective fractional variational calculus in terms of a combined Caputo derivative, Applied Mathematics and Computation, 218 (2012), 5099-5111. doi: 10.1016/j.amc.2011.10.075.

[32]

M. W. Michalski, Derivatives of noninteger order and their applications, Dissertations Mathematicae, (Rozprawy Mat. ), 328 (1993), 47pp. doi: 94k: 26011.

[33]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems, Signal Process, 91 (2011), 379-385. doi: 10.1016/j.sigpro.2010.07.016.

[34]

S. PoosehR. Almeida and D. F. M. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manage. Optim., 10 (2014), 363-381. doi: 10.3934/jimo.2014.10.363.

[35]

F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581-3592. doi: 10.1103/PhysRevE.55.3581.

[36]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives -Theory and Applications, 976 pages, Gordon and Breach: Amsterdam, 1993.

[37]

Ch. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics International Journal of Differential Equation (2010), Article ID 461048, 16 pages. doi: 2011c: 49051.

[38]

S. Westerlund and L. Ekstam, Capacitor theory, IEEE Transactions on Dielectrics and Electrical Insulation, 1 (1994), 826-839. doi: 10.1109/94.326654.

[39]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061.

show all references

References:
[1]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam., 38 (2004), 323-337. doi: 10.1007/s11071-004-3764-6.

[2]

T. Akbarian and M. Keyanpour, A new approach to the numerical solution of fractional order optimal control problems, Applications and Applied Mathematics, 8 (2013), 523-534.

[3]

R. AlmeidaS. Pooseh and D. F. M. Torres, Fractional variational problems depending on indefinite integrals, Nonlinear Anal., 75 (2012), 1009-1025. doi: 10.1016/j.na.2011.02.028.

[4]

R. Almeida and D. F. M. Torres, Calculus of variations with fractional derivatives and fractional integrals, Appl. Math. Lett., 22 (2009), 1816-1820. doi: 10.1016/j.aml.2009.07.002.

[5]

R. L. Bagley and P. J. Torvik, On the fractional calculus model of viscoelastic behaviour, Journal of Rheology, 30 (1986), 133-155.

[6]

S. Banach, Teoria Operacyj I, Warsaw, 1931 (in Polish).

[7]

L. Bourdin and D. Idczak, Fractional fundamental lemma and fractional integration by parts formula -Applications to critical points of Bolza functionals and to linear boundary value problems, Adv. Differential Equations, 20 (2015), 213-232.

[8]

L. BourdinT. Odzijewicz and D. F. Torres, Existence of minimizers for fractional variational problems containing Caputo derivatives, Advances in Dynamical Systems and Applications, 8 (2013), 3-12.

[9]

J. Cresson, Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 48 (2007), 033504, 34pp. doi: 10.1063/1.2483292.

[10]

A. Dzielinski, G. Sarwas and D. Sierociuk, Comparison and validation of integer and fractional order ultracapacitor models, Advances in Difference Equations, 2011 (2011), 15pp.

[11]

A. DzielinskiD. Sierociuk and G. Sarwas, Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences: Technical Sciences, 58 (2010), 583-592. doi: 10.2478/v10175-010-0059-6.

[12]

G. S. F. Frederico and D. F. M. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl., 334 (2007), 834-846. doi: 10.1016/j.jmaa.2007.01.013.

[13]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam., 53 (2008), 215-222. doi: 10.1007/s11071-007-9309-z.

[14]

G. S. F. Frederico and D. F. M. Torres, Fractional Noether's theorem in the Riesz-Caputo sense, Appl. Math. Comput., 217 (2010), 1023-1033. doi: 10.1016/j.amc.2010.01.100.

[15]

F. Ghomanjani, A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations, Journal of the Egyptian Mathematical Society, 24 (2016), 638-643. doi: 10.1016/j.joems.2015.12.003.

[16]

R. Herrmann, Fractional Calculus. An Introduction for Physicists, Second edition. World Scientific Publishing Co. Pte. Ltd. , Hackensack, NJ, 2014. doi: 10.1142/8934.

[17]

R. Hilfer, Applications of Fractional Calculus in Physics, 463 pages, World Sci. Publishing, River Edge, NJ, 2000. doi: 10.1142/9789812817747.

[18]

D. Idczak and M. Majewski, Fractional fundamental lemma of order $α∈ (n-\frac{1}{2}, n)$ with $n∈\mathbb{N}$, $n≥q 2$, Dynamic Systems and Applications, 21 (2012), 251-268.

[19]

D. Idczak and S. Walczak, A fractional imbedding theorem, Fract.Calc.Appl.Anal., 15 (2012), 418-425. doi: 10.2478/s13540-012-0030-3.

[20]

A. D. Ioffe and V. M. Tikchomirov, Theory of Extremal Problems, North-Holland, 1979.

[21]

Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems, Struct. Multidisc. Optim., 38 (2009), 571-581. doi: 10.1007/s00158-008-0307-7.

[22]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Mathematical Methods in the Applied Sciences, 37 (2014), 1668-1686. doi: 10.1002/mma.2928.

[23]

R. Kamocki, On the existence of optimal solutions to fractional optimal control problems, Appl. Math. Comput., 235 (2014), 94-104. doi: 10.1016/j.amc.2014.02.086.

[24]

M. M. Khader and A. S. Hendy, An efficient numerical scheme for solving fractional optimal control problems, International Journal of Nonlinear Science, 14 (2012), 287-296.

[25]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 523 pages, Elsevier, Amsterdam, 2006.

[26]

M. Kisielewicz, Differential Inclusions and Optimal Control, 240 pages, PWN with Kluwer Academic Puplishers, Warsaw-Dordrecht, 1991.

[27]

M. Klimek, On Solutions of Linear Fractional Differential Equations of A Variational Type, The Publishing Office of Czestochowa University of Technology, Czestochowa, 2009.

[28]

T. A. M. Langlands, Solution of a modified fractional diffusion equation, Physica a Statistical Mechanics and its Applications, 367 (2006), 136-144. doi: 10.1016/j.physa.2005.12.012.

[29]

A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians, Applied Mathematics Letters, 25 (2012), 1941-1946. doi: 10.1016/j.aml.2012.03.006.

[30]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations, 300 pages, Imperial College Press, London, 2012. doi: 10.1142/p871.

[31]

A. B. Malinowska and D. F. M. Torres, Multiobjective fractional variational calculus in terms of a combined Caputo derivative, Applied Mathematics and Computation, 218 (2012), 5099-5111. doi: 10.1016/j.amc.2011.10.075.

[32]

M. W. Michalski, Derivatives of noninteger order and their applications, Dissertations Mathematicae, (Rozprawy Mat. ), 328 (1993), 47pp. doi: 94k: 26011.

[33]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems, Signal Process, 91 (2011), 379-385. doi: 10.1016/j.sigpro.2010.07.016.

[34]

S. PoosehR. Almeida and D. F. M. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manage. Optim., 10 (2014), 363-381. doi: 10.3934/jimo.2014.10.363.

[35]

F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581-3592. doi: 10.1103/PhysRevE.55.3581.

[36]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives -Theory and Applications, 976 pages, Gordon and Breach: Amsterdam, 1993.

[37]

Ch. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics International Journal of Differential Equation (2010), Article ID 461048, 16 pages. doi: 2011c: 49051.

[38]

S. Westerlund and L. Ekstam, Capacitor theory, IEEE Transactions on Dielectrics and Electrical Insulation, 1 (1994), 826-839. doi: 10.1109/94.326654.

[39]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061.

[1]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[2]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[3]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[4]

Igor Kossowski, Katarzyna Szymańska-Dębowska. Solutions to resonant boundary value problem with boundary conditions involving Riemann-Stieltjes integrals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 275-281. doi: 10.3934/dcdsb.2018019

[5]

Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411

[6]

Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065

[7]

Chang-Shou Lin, Lei Zhang. Classification of radial solutions to Liouville systems with singularities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2617-2637. doi: 10.3934/dcds.2014.34.2617

[8]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[9]

Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467

[10]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[11]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[12]

Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066

[13]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[14]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 695-708. doi: 10.3934/dcdss.2020038

[15]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[16]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[17]

Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres. Fractional order optimal control problems with free terminal time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 363-381. doi: 10.3934/jimo.2014.10.363

[18]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[19]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[20]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (13)
  • HTML views (22)
  • Cited by (0)

Other articles
by authors

[Back to Top]