September  2017, 7(3): 369-391. doi: 10.3934/mcrf.2017013

Boundary feedback stabilization of the monodomain equations

1. 

Institute for Mathematics and Scientific Computing, Karl-Franzens-Universität Graz, Heinrichstr. 36,8010 Graz, Austria

2. 

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstraße 69, A-4040 Linz, Austria

* Corresponding author: Tobias Breiten

Received  July 2016 Revised  November 2016 Published  July 2017

Boundary feedback control for a coupled nonlinear PDE-ODE system (in the two and three dimensional cases) is studied. Particular focus is put on the monodomain equations arising in the context of cardiac electrophysiology. Neumann as well as Dirichlet based boundary control laws are obtained by an algebraic operator Riccati equation associated with the linearized system. Local exponential stability of the nonlinear closed loop system is shown by a fixed-point argument. Numerical examples are given for a finite element discretization of the two dimensional monodomain equations.

Citation: Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control & Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013
References:
[1]

R. Adams and J. Fournier, Sobolev Spaces, Academic Press, 2003. Google Scholar

[2]

M. Badra, Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete Contin. Dyn. Syst., 32 (2012), 1169-1208. doi: 10.3934/dcds.2012.32.1169. Google Scholar

[3]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers. application to the Navier-Stokes system, SIAM Journal on Control and Optimization, 49 (2011), 420-463. doi: 10.1137/090778146. Google Scholar

[4]

V. Barbu, Feedback stabilization of Navier-Stokes equations, ESAIM: Control, Optimisation and Calculus of Variations, 9 (2003), 197-206. doi: 10.1051/cocv:2003009. Google Scholar

[5]

V. BarbuI. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoirs of the American Mathematical Society, 181 (2006), x+128 pp. doi: 10.1090/memo/0852. Google Scholar

[6]

V. Barbu and G. Wang, Feedback stabilization of semilinear heat equations, in Abstract and Applied Analysis, Hindawi Publishing Corporation, 12 (2003), 697-714. doi: 10.1155/S1085337503212100. Google Scholar

[7]

P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: A state of the art survey, GAMM-Mitteilungen, 36 (2013), 32-52. doi: 10.1002/gamm.201310003. Google Scholar

[8]

A. Bensoussan, G. D. Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, vol. 1, Birkhäuser Boston, Inc. , Boston, MA, 1992. Google Scholar

[9]

T. Breiten and K. Kunisch, Riccati-based feedback control of the monodomain equations with the FitzHugh-Nagumo model, SIAM Journal on Control and Optimization, 52 (2014), 4057-4081. doi: 10.1137/140964552. Google Scholar

[10]

T. Breiten and K. Kunisch, Compensator design for the monodomain equations with the Fitzhugh-Nagumo model, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 241-262. doi: 10.1051/cocv/2015047. Google Scholar

[11]

J. BurnsE. Sachs and L. Zietsman, Mesh independence of Kleinman-Newton iterations for Riccati equations in Hilbert space, SIAM Journal on Control and Optimization, 47 (2008), 2663-2692. doi: 10.1137/060653962. Google Scholar

[12]

E. CasasC. Ryll and F. Tröltzsch, Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation, SIAM Journal on Control and Optimization, 53 (2015), 2168-2202. doi: 10.1137/140978855. Google Scholar

[13]

R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6. Google Scholar

[14]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society, 166 (2013), viii+114 pp. doi: 10.1090/memo/0788. Google Scholar

[15]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: The linear case, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006), 442-465. doi: 10.1051/cocv:2006010. Google Scholar

[16]

A. Fursikov and O. Imanuvilov, Controllability of Evolution Equations, Seoul National University, Korea, 1996, Lecture Notes no. 34. Google Scholar

[17]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, SIAM, 1985. Google Scholar

[18]

G. Grubb and V. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods, Mathematica Scandinavica, 69 (1991), 217-290. doi: 10.7146/math.scand.a-12380. Google Scholar

[19]

J. Keener and J. Sneyd, Mathematical Physiology, Vol. I: Cellular Physiology, vol. 8 of Interdisciplinary Applied Mathematics, 2nd edition, Springer, New York, 2009. doi: 10.1007/978-0-387-79388-7. Google Scholar

[20]

D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Transactions on Automatic Control, 13 (1968), 114-115. doi: 10.1109/TAC.1968.1098829. Google Scholar

[21]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems: Continuous and Approximation Theories, Cambridge University Press, 2000. Google Scholar

[22]

J. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. Ⅰ/Ⅱ, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Springer-Verlag, Berlin, 1972.Google Scholar

[23]

B. NielsenT. RuudG. Lines and A. Tveito, Optimal monodomain approximations of the bidomain equations, Applied Mathematics and Computation, 184 (2007), 276-290. doi: 10.1016/j.amc.2006.05.158. Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[25]

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), 790-828. doi: 10.1137/050628726. Google Scholar

[26]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, Journal de Mathématiques Pures Et Appliquées, 87 (2007), 627-669. doi: 10.1016/j.matpur.2007.04.002. Google Scholar

[27]

O. Savin and E. Valdinoci, Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM Journal on Mathematical Analysis, 43 (2011), 2675-2687. doi: 10.1137/110831040. Google Scholar

[28]

F. Schlögl, A characteristic critical quantity in nonequilibrium phase transitions, Zeitschrift für Physik B Condensed Matter, 52 (1983), 51-60. Google Scholar

[29]

L. ThevenetJ.-M. Buchot and J.-P. Raymond, Nonlinear feedback stabilization of a two-dimensional Burgers equation, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 929-955. doi: 10.1051/cocv/2009028. Google Scholar

[30]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators North-Holland Publishing Company, 1978. Google Scholar

[31]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkäuser, 2009. doi: 10.1007/978-3-7643-8994-9. Google Scholar

show all references

References:
[1]

R. Adams and J. Fournier, Sobolev Spaces, Academic Press, 2003. Google Scholar

[2]

M. Badra, Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete Contin. Dyn. Syst., 32 (2012), 1169-1208. doi: 10.3934/dcds.2012.32.1169. Google Scholar

[3]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers. application to the Navier-Stokes system, SIAM Journal on Control and Optimization, 49 (2011), 420-463. doi: 10.1137/090778146. Google Scholar

[4]

V. Barbu, Feedback stabilization of Navier-Stokes equations, ESAIM: Control, Optimisation and Calculus of Variations, 9 (2003), 197-206. doi: 10.1051/cocv:2003009. Google Scholar

[5]

V. BarbuI. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoirs of the American Mathematical Society, 181 (2006), x+128 pp. doi: 10.1090/memo/0852. Google Scholar

[6]

V. Barbu and G. Wang, Feedback stabilization of semilinear heat equations, in Abstract and Applied Analysis, Hindawi Publishing Corporation, 12 (2003), 697-714. doi: 10.1155/S1085337503212100. Google Scholar

[7]

P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: A state of the art survey, GAMM-Mitteilungen, 36 (2013), 32-52. doi: 10.1002/gamm.201310003. Google Scholar

[8]

A. Bensoussan, G. D. Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, vol. 1, Birkhäuser Boston, Inc. , Boston, MA, 1992. Google Scholar

[9]

T. Breiten and K. Kunisch, Riccati-based feedback control of the monodomain equations with the FitzHugh-Nagumo model, SIAM Journal on Control and Optimization, 52 (2014), 4057-4081. doi: 10.1137/140964552. Google Scholar

[10]

T. Breiten and K. Kunisch, Compensator design for the monodomain equations with the Fitzhugh-Nagumo model, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 241-262. doi: 10.1051/cocv/2015047. Google Scholar

[11]

J. BurnsE. Sachs and L. Zietsman, Mesh independence of Kleinman-Newton iterations for Riccati equations in Hilbert space, SIAM Journal on Control and Optimization, 47 (2008), 2663-2692. doi: 10.1137/060653962. Google Scholar

[12]

E. CasasC. Ryll and F. Tröltzsch, Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation, SIAM Journal on Control and Optimization, 53 (2015), 2168-2202. doi: 10.1137/140978855. Google Scholar

[13]

R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6. Google Scholar

[14]

R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society, 166 (2013), viii+114 pp. doi: 10.1090/memo/0788. Google Scholar

[15]

E. Fernández-CaraM. González-BurgosS. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: The linear case, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006), 442-465. doi: 10.1051/cocv:2006010. Google Scholar

[16]

A. Fursikov and O. Imanuvilov, Controllability of Evolution Equations, Seoul National University, Korea, 1996, Lecture Notes no. 34. Google Scholar

[17]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, SIAM, 1985. Google Scholar

[18]

G. Grubb and V. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods, Mathematica Scandinavica, 69 (1991), 217-290. doi: 10.7146/math.scand.a-12380. Google Scholar

[19]

J. Keener and J. Sneyd, Mathematical Physiology, Vol. I: Cellular Physiology, vol. 8 of Interdisciplinary Applied Mathematics, 2nd edition, Springer, New York, 2009. doi: 10.1007/978-0-387-79388-7. Google Scholar

[20]

D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Transactions on Automatic Control, 13 (1968), 114-115. doi: 10.1109/TAC.1968.1098829. Google Scholar

[21]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems: Continuous and Approximation Theories, Cambridge University Press, 2000. Google Scholar

[22]

J. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. Ⅰ/Ⅱ, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Springer-Verlag, Berlin, 1972.Google Scholar

[23]

B. NielsenT. RuudG. Lines and A. Tveito, Optimal monodomain approximations of the bidomain equations, Applied Mathematics and Computation, 184 (2007), 276-290. doi: 10.1016/j.amc.2006.05.158. Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. Google Scholar

[25]

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM Journal on Control and Optimization, 45 (2006), 790-828. doi: 10.1137/050628726. Google Scholar

[26]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, Journal de Mathématiques Pures Et Appliquées, 87 (2007), 627-669. doi: 10.1016/j.matpur.2007.04.002. Google Scholar

[27]

O. Savin and E. Valdinoci, Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM Journal on Mathematical Analysis, 43 (2011), 2675-2687. doi: 10.1137/110831040. Google Scholar

[28]

F. Schlögl, A characteristic critical quantity in nonequilibrium phase transitions, Zeitschrift für Physik B Condensed Matter, 52 (1983), 51-60. Google Scholar

[29]

L. ThevenetJ.-M. Buchot and J.-P. Raymond, Nonlinear feedback stabilization of a two-dimensional Burgers equation, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2010), 929-955. doi: 10.1051/cocv/2009028. Google Scholar

[30]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators North-Holland Publishing Company, 1978. Google Scholar

[31]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkäuser, 2009. doi: 10.1007/978-3-7643-8994-9. Google Scholar

Figure 1.  Control setup
Figure 2.  Stabilization of perturbed initial state
Figure 3.  Stabilization of a reentry wave
Figure 4.  Stabilization of perturbed initial state
[1]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[2]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[3]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[4]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[5]

Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021

[6]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[7]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[8]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[9]

Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050

[10]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[11]

Martin Gugat, Mario Sigalotti. Stars of vibrating strings: Switching boundary feedback stabilization. Networks & Heterogeneous Media, 2010, 5 (2) : 299-314. doi: 10.3934/nhm.2010.5.299

[12]

Kaïs Ammari, Denis Mercier. Boundary feedback stabilization of a chain of serially connected strings. Evolution Equations & Control Theory, 2015, 4 (1) : 1-19. doi: 10.3934/eect.2015.4.1

[13]

Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579

[14]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[15]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[16]

Sebastian Aniţa, William Edward Fitzgibbon, Michel Langlais. Global existence and internal stabilization for a reaction-diffusion system posed on non coincident spatial domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 805-822. doi: 10.3934/dcdsb.2009.11.805

[17]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[18]

Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations & Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014

[19]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[20]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (19)
  • HTML views (14)
  • Cited by (0)

Other articles
by authors

[Back to Top]