• Previous Article
    Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory
  • MCRF Home
  • This Issue
  • Next Article
    Control and stabilization of 2 × 2 hyperbolic systems on graphs
March  2017, 7(1): 41-52. doi: 10.3934/mcrf.2017003

A discrete hierarchy of double bracket equations and a class of negative power series

1. 

Instituto de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 67 No. 53 -108, Medellin, Colombia

2. 

Departamento de Ciencias Básicas, Universidad del Sinú, Cra 1w No. 38-153, Barrio Juan XXⅢ, Montería, Colombia

* Corresponding author:nancy.lopez@udea.edu.co

Received  October 2015 Revised  September 2016 Published  December 2016

Fund Project: The first author is supported by UdeA under SUI Project (Acta No.701,2015-03-11)

The space of negative power series of $z$ on $\{z\in \mathbb{C}:|z|>1\}$ can also be parametrized by means of a system of double bracket differential equations. To show this parametrization we introduce a group factorization for equation system. This work, for the case of a double bracket system, is a continuation of an earlier study discussed in The discrete KP hierarchy and the negative power series on the complex plane. Comp. and App. Math. 32 (2013), 483-493 for the case of one bracket system.

Citation: Nancy López Reyes, Luis E. Benítez Babilonia. A discrete hierarchy of double bracket equations and a class of negative power series. Mathematical Control & Related Fields, 2017, 7 (1) : 41-52. doi: 10.3934/mcrf.2017003
References:
[1]

L. Benitez-BabiloniaR. Felipe and N. López Reyes, Algebraic analysis of a discrete hierarchy of double bracket equations, Diff. Equ. and Dyn. Syst., 17 (2009), 77-90. doi: 10.1007/s12591-009-0006-x. Google Scholar

[2]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems: Foundations and Applications, Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4581-6. Google Scholar

[3]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995. doi: 978-1-4612-8702-5. Google Scholar

[4]

R. Felipe, Algebraic aspects of Brockett type equations, Physica D, 132 (1999), 287-297. doi: 10.1016/S0167-2789(99)00025-1. Google Scholar

[5]

R. Felipe and F. Ongay, Algebraic aspects of the discrete KP hierarchy, Linear Alg. and its Appl., 338 (2001), 1-17. doi: 10.1016/S0024-3795(01)00365-2. Google Scholar

[6]

R. Felipe and N. López Reyes, The finite discrete KP hierarchy and the rational functions Disc. Dyna. in Natu. and Soci., 2008 (2008), Article ID 792632, 10pp. doi: 10.1155/2008/792632. Google Scholar

[7]

R. Felipe and N. López Reyes, Integrability of a double bracket system, Rev. Integración, 31 (2013), 15-23. Google Scholar

[8]

B. Jacob and H. J. Zwart, Properties of the realization of inner functions, Math. Cont. Sign. Syst., 15 (2002), 356-379. doi: 10.1016/S0167-6911(01)00113-X. Google Scholar

[9]

N. López ReyesR. Felipe and T. Castro Polo, The discrete KP hierarchy and the negative power series on the complex plane, Comp. and Appl. Math., 32 (2013), 483-493. doi: 10.1007/s40314-013-0031-9. Google Scholar

[10]

Y. Nakamura, Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal., 22 (1991), 1744-1754. doi: 10.1137/0522108. Google Scholar

[11]

T.-Y. Tam, Gradiente flows and double bracket equations, Diff. Geom. Appl., 20 (2004), 209-224. doi: 10.1016/j.difgeo.2003.10.008. Google Scholar

[12]

H. J. Zwart, Transfer functions for infinite-dimensional systems, Syst. Cont. Lett., 52 (2004), 247-255. doi: 10.1016/j.sysconle.2004.02.002. Google Scholar

show all references

References:
[1]

L. Benitez-BabiloniaR. Felipe and N. López Reyes, Algebraic analysis of a discrete hierarchy of double bracket equations, Diff. Equ. and Dyn. Syst., 17 (2009), 77-90. doi: 10.1007/s12591-009-0006-x. Google Scholar

[2]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems: Foundations and Applications, Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4581-6. Google Scholar

[3]

R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Systems Theory, Texts in Applied Mathematics 21, Springer-Verlag, New York, 1995. doi: 978-1-4612-8702-5. Google Scholar

[4]

R. Felipe, Algebraic aspects of Brockett type equations, Physica D, 132 (1999), 287-297. doi: 10.1016/S0167-2789(99)00025-1. Google Scholar

[5]

R. Felipe and F. Ongay, Algebraic aspects of the discrete KP hierarchy, Linear Alg. and its Appl., 338 (2001), 1-17. doi: 10.1016/S0024-3795(01)00365-2. Google Scholar

[6]

R. Felipe and N. López Reyes, The finite discrete KP hierarchy and the rational functions Disc. Dyna. in Natu. and Soci., 2008 (2008), Article ID 792632, 10pp. doi: 10.1155/2008/792632. Google Scholar

[7]

R. Felipe and N. López Reyes, Integrability of a double bracket system, Rev. Integración, 31 (2013), 15-23. Google Scholar

[8]

B. Jacob and H. J. Zwart, Properties of the realization of inner functions, Math. Cont. Sign. Syst., 15 (2002), 356-379. doi: 10.1016/S0167-6911(01)00113-X. Google Scholar

[9]

N. López ReyesR. Felipe and T. Castro Polo, The discrete KP hierarchy and the negative power series on the complex plane, Comp. and Appl. Math., 32 (2013), 483-493. doi: 10.1007/s40314-013-0031-9. Google Scholar

[10]

Y. Nakamura, Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal., 22 (1991), 1744-1754. doi: 10.1137/0522108. Google Scholar

[11]

T.-Y. Tam, Gradiente flows and double bracket equations, Diff. Geom. Appl., 20 (2004), 209-224. doi: 10.1016/j.difgeo.2003.10.008. Google Scholar

[12]

H. J. Zwart, Transfer functions for infinite-dimensional systems, Syst. Cont. Lett., 52 (2004), 247-255. doi: 10.1016/j.sysconle.2004.02.002. Google Scholar

[1]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[2]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[3]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[4]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

[5]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial & Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[6]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[7]

Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241

[8]

Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531

[9]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[10]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655

[11]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[12]

Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems & Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567

[13]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[14]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[15]

Gafurjan Ibragimov, Askar Rakhmanov, Idham Arif Alias, Mai Zurwatul Ahlam Mohd Jaffar. The soft landing problem for an infinite system of second order differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 89-94. doi: 10.3934/naco.2017005

[16]

Paolo Perfetti. An infinite-dimensional extension of a Poincaré's result concerning the continuation of periodic orbits. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 401-418. doi: 10.3934/dcds.1997.3.401

[17]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[18]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

[19]

Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503

[20]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (10)
  • HTML views (1)
  • Cited by (0)

[Back to Top]