• Previous Article
    Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation
  • MCRF Home
  • This Issue
  • Next Article
    Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time-scale Markovian switching
September  2015, 5(3): 679-695. doi: 10.3934/mcrf.2015.5.679

Constrained nonsmooth utility maximization on the positive real line

1. 

Department of Mathematics, Imperial College, London, SW7 2AZ, United Kingdom

2. 

Department of Mathematics, Imperial College, London SW7 2AZ

Received  March 2014 Revised  December 2014 Published  July 2015

We maximize the expected utility of terminal wealth in an incomplete market where there are cone constraints on the investor's portfolio process and the utility function is not assumed to be strictly concave or differentiable. We establish the existence of the optimal solutions to the primal and dual problems and their dual relationship. We simplify the present proofs in this area and extend the existing duality theory to the constrained nonsmooth setting.
Citation: Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control & Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679
References:
[1]

F. Bellini and M. Frittelli, On the existence of minimax martingale measures,, Math. Finance, 12 (2002), 1. doi: 10.1111/1467-9965.00001.

[2]

S. Biagini and M. Frittelli, Utility maximization in incomplete markets for unbounded processes,, Finance Stoch., 9 (2005), 493. doi: 10.1007/s00780-005-0163-x.

[3]

S. Biagini, M. Frittelli and M. Grasselli, Indifference price with general semimartingales,, Math. Finance, 21 (2011), 423. doi: 10.1111/j.1467-9965.2010.00443.x.

[4]

B. Bian, S. Miao and H. Zheng, Smooth value functions for a class of nonsmooth utility maximization problems,, SIAM J. Financial Math., 2 (2011), 727. doi: 10.1137/100793396.

[5]

B. Bian and H. Zheng, Turnpike property and convergence rate for an investment model with general utility functions,, J. Economic Dynamics Control, 51 (2015), 28. doi: 10.1016/j.jedc.2014.09.025.

[6]

B. Bouchard, N. Touzi and A. Zeghal, Dual formulation of the utility maximization problem: The case of nonsmooth utility,, Ann. Appl. Probab., 14 (2004), 678. doi: 10.1214/105051604000000062.

[7]

J. Cvitanić, Minimizing expected loss of hedging in incomplete and constrained markets,, SIAM J. Control Optim., 38 (2000), 1050. doi: 10.1137/S036301299834185X.

[8]

J. Cvitanić, W. Schachermayer and H. Wang, Utility maximization in incomplete markets with random endowment,, Finance Stoch., 5 (2001), 259. doi: 10.1007/PL00013534.

[9]

C. Czichowsky, N. Westray and H. Zheng, Convergence in the semimartingale topology and constrained portfolios,, Séminaire de Probabilités, 2006 (2011), 395. doi: 10.1007/978-3-642-15217-7_17.

[10]

G. Deelstra, H. Pham and N. Touzi, Dual formulation of the utility maximization problem under transaction costs,, Ann. Appl. Probab., 11 (2001), 1353. doi: 10.1214/aoap/1015345406.

[11]

F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing,, Math. Ann., 300 (1994), 463. doi: 10.1007/BF01450498.

[12]

M. Émery, Une topologie sur l'espace des semimartingales,, Séminaire de Probabilités, XIII (1979), 260.

[13]

H. Föllmer and D. Kramkov, Optional decompositions under constraints,, Probab. Theory Related Fields, 109 (1997), 1. doi: 10.1007/s004400050122.

[14]

H. G. Heuser, Functional Analysis,, Wiley, (1982).

[15]

E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable,, Springer, (1965).

[16]

J. Hugonnier and D. Kramkov, Optimal investment with random endowments in incomplete markets,, Ann. Appl. Probab., 14 (2004), 845. doi: 10.1214/105051604000000134.

[17]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes,, $2^{nd}$ edition, (2003). doi: 10.1007/978-3-662-05265-5.

[18]

I. Karatzas and G. Žitković, Optimal consumption from investment and random endowment in incomplete semimartingale markets,, Ann. Probab., 31 (2003), 1821. doi: 10.1214/aop/1068646367.

[19]

D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets,, Ann. Appl. Probab., 9 (1999), 904. doi: 10.1214/aoap/1029962818.

[20]

D. Kramkov and W. Schachermayer, Necessary and sufficient conditions in the problem of optimal investment in incomplete markets,, Ann. Appl. Probab., 13 (2003), 1504. doi: 10.1214/aoap/1069786508.

[21]

D. G. Luenberger, Optimization by Vector Space Methods,, Wiley, (1969).

[22]

J. Mémin, Espaces de semi martingales et changement de probabilité,, Z. Wahrsch. Verw. Gebiete, 52 (1980), 9. doi: 10.1007/BF00534184.

[23]

M. Mnif and H. Pham, Stochastic optimization under constraints,, Stochastic Process. Appl., 93 (2001), 149. doi: 10.1016/S0304-4149(00)00089-2.

[24]

H. Pham, Minimizing shortfall risk and applications to finance and insurance problems,, Ann. Appl. Probab., 12 (2002), 143. doi: 10.1214/aoap/1015961159.

[25]

P. E. Protter, Stochastic Integration and Differential Equations,, $2^{nd}$ edition, (2004).

[26]

R. T. Rockafellar, Extension of Fenchel's duality theorem for convex functions,, Duke Math. J., 33 (1966), 81. doi: 10.1215/S0012-7094-66-03312-6.

[27]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1970).

[28]

R. T. Rockafellar, Integrals which are convex functionals. II,, Pacific J. Math., 39 (1971), 439. doi: 10.2140/pjm.1971.39.439.

[29]

L. C. G. Rogers, Duality in constrained optimal investment and consumption problems: A synthesis,, in Paris-Princeton Lectures on Mathematical Finance, 1814 (2003), 95. doi: 10.1007/978-3-540-44859-4_3.

[30]

N. Westray and H. Zheng, Constrained nonsmooth utility maximization without quadratic inf convolution,, Stochastic Process. Appl., 119 (2009), 1561. doi: 10.1016/j.spa.2008.08.002.

[31]

N. Westray and H. Zheng, Minimal sufficient conditions for a primal optimizer in nonsmooth utility maximization,, Finance Stoch., 15 (2011), 501. doi: 10.1007/s00780-010-0128-6.

[32]

K. Yosida and E. Hewitt, Finitely additive measures,, Trans. Amer. Math. Soc., 72 (1952), 46. doi: 10.1090/S0002-9947-1952-0045194-X.

show all references

References:
[1]

F. Bellini and M. Frittelli, On the existence of minimax martingale measures,, Math. Finance, 12 (2002), 1. doi: 10.1111/1467-9965.00001.

[2]

S. Biagini and M. Frittelli, Utility maximization in incomplete markets for unbounded processes,, Finance Stoch., 9 (2005), 493. doi: 10.1007/s00780-005-0163-x.

[3]

S. Biagini, M. Frittelli and M. Grasselli, Indifference price with general semimartingales,, Math. Finance, 21 (2011), 423. doi: 10.1111/j.1467-9965.2010.00443.x.

[4]

B. Bian, S. Miao and H. Zheng, Smooth value functions for a class of nonsmooth utility maximization problems,, SIAM J. Financial Math., 2 (2011), 727. doi: 10.1137/100793396.

[5]

B. Bian and H. Zheng, Turnpike property and convergence rate for an investment model with general utility functions,, J. Economic Dynamics Control, 51 (2015), 28. doi: 10.1016/j.jedc.2014.09.025.

[6]

B. Bouchard, N. Touzi and A. Zeghal, Dual formulation of the utility maximization problem: The case of nonsmooth utility,, Ann. Appl. Probab., 14 (2004), 678. doi: 10.1214/105051604000000062.

[7]

J. Cvitanić, Minimizing expected loss of hedging in incomplete and constrained markets,, SIAM J. Control Optim., 38 (2000), 1050. doi: 10.1137/S036301299834185X.

[8]

J. Cvitanić, W. Schachermayer and H. Wang, Utility maximization in incomplete markets with random endowment,, Finance Stoch., 5 (2001), 259. doi: 10.1007/PL00013534.

[9]

C. Czichowsky, N. Westray and H. Zheng, Convergence in the semimartingale topology and constrained portfolios,, Séminaire de Probabilités, 2006 (2011), 395. doi: 10.1007/978-3-642-15217-7_17.

[10]

G. Deelstra, H. Pham and N. Touzi, Dual formulation of the utility maximization problem under transaction costs,, Ann. Appl. Probab., 11 (2001), 1353. doi: 10.1214/aoap/1015345406.

[11]

F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing,, Math. Ann., 300 (1994), 463. doi: 10.1007/BF01450498.

[12]

M. Émery, Une topologie sur l'espace des semimartingales,, Séminaire de Probabilités, XIII (1979), 260.

[13]

H. Föllmer and D. Kramkov, Optional decompositions under constraints,, Probab. Theory Related Fields, 109 (1997), 1. doi: 10.1007/s004400050122.

[14]

H. G. Heuser, Functional Analysis,, Wiley, (1982).

[15]

E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable,, Springer, (1965).

[16]

J. Hugonnier and D. Kramkov, Optimal investment with random endowments in incomplete markets,, Ann. Appl. Probab., 14 (2004), 845. doi: 10.1214/105051604000000134.

[17]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes,, $2^{nd}$ edition, (2003). doi: 10.1007/978-3-662-05265-5.

[18]

I. Karatzas and G. Žitković, Optimal consumption from investment and random endowment in incomplete semimartingale markets,, Ann. Probab., 31 (2003), 1821. doi: 10.1214/aop/1068646367.

[19]

D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets,, Ann. Appl. Probab., 9 (1999), 904. doi: 10.1214/aoap/1029962818.

[20]

D. Kramkov and W. Schachermayer, Necessary and sufficient conditions in the problem of optimal investment in incomplete markets,, Ann. Appl. Probab., 13 (2003), 1504. doi: 10.1214/aoap/1069786508.

[21]

D. G. Luenberger, Optimization by Vector Space Methods,, Wiley, (1969).

[22]

J. Mémin, Espaces de semi martingales et changement de probabilité,, Z. Wahrsch. Verw. Gebiete, 52 (1980), 9. doi: 10.1007/BF00534184.

[23]

M. Mnif and H. Pham, Stochastic optimization under constraints,, Stochastic Process. Appl., 93 (2001), 149. doi: 10.1016/S0304-4149(00)00089-2.

[24]

H. Pham, Minimizing shortfall risk and applications to finance and insurance problems,, Ann. Appl. Probab., 12 (2002), 143. doi: 10.1214/aoap/1015961159.

[25]

P. E. Protter, Stochastic Integration and Differential Equations,, $2^{nd}$ edition, (2004).

[26]

R. T. Rockafellar, Extension of Fenchel's duality theorem for convex functions,, Duke Math. J., 33 (1966), 81. doi: 10.1215/S0012-7094-66-03312-6.

[27]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1970).

[28]

R. T. Rockafellar, Integrals which are convex functionals. II,, Pacific J. Math., 39 (1971), 439. doi: 10.2140/pjm.1971.39.439.

[29]

L. C. G. Rogers, Duality in constrained optimal investment and consumption problems: A synthesis,, in Paris-Princeton Lectures on Mathematical Finance, 1814 (2003), 95. doi: 10.1007/978-3-540-44859-4_3.

[30]

N. Westray and H. Zheng, Constrained nonsmooth utility maximization without quadratic inf convolution,, Stochastic Process. Appl., 119 (2009), 1561. doi: 10.1016/j.spa.2008.08.002.

[31]

N. Westray and H. Zheng, Minimal sufficient conditions for a primal optimizer in nonsmooth utility maximization,, Finance Stoch., 15 (2011), 501. doi: 10.1007/s00780-010-0128-6.

[32]

K. Yosida and E. Hewitt, Finitely additive measures,, Trans. Amer. Math. Soc., 72 (1952), 46. doi: 10.1090/S0002-9947-1952-0045194-X.

[1]

Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019033

[2]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[3]

Shiyong Li, Wei Sun, Quan-Lin Li. Utility maximization for bandwidth allocation in peer-to-peer file-sharing networks. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018194

[4]

Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171

[5]

Abdelmalek Aboussoror, Samir Adly, Vincent Jalby. Weak nonlinear bilevel problems: Existence of solutions via reverse convex and convex maximization problems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 559-571. doi: 10.3934/jimo.2011.7.559

[6]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[7]

Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial & Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004

[8]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[9]

Yi Zhang, Liwei Zhang, Jia Wu. On the convergence properties of a smoothing approach for mathematical programs with symmetric cone complementarity constraints. Journal of Industrial & Management Optimization, 2018, 14 (3) : 981-1005. doi: 10.3934/jimo.2017086

[10]

Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733

[11]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

[12]

Dan Li, Li-Ping Pang, Fang-Fang Guo, Zun-Quan Xia. An alternating linearization method with inexact data for bilevel nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 859-869. doi: 10.3934/jimo.2014.10.859

[13]

David Yang Gao. Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints. Journal of Industrial & Management Optimization, 2005, 1 (1) : 53-63. doi: 10.3934/jimo.2005.1.53

[14]

Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939

[15]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[16]

Jean-François Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints. Networks & Heterogeneous Media, 2016, 11 (2) : 223-237. doi: 10.3934/nhm.2016.11.223

[17]

Xi-De Zhu, Li-Ping Pang, Gui-Hua Lin. Two approaches for solving mathematical programs with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 951-968. doi: 10.3934/jimo.2015.11.951

[18]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1

[19]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

[20]

Lei Guo, Gui-Hua Lin. Globally convergent algorithm for solving stationary points for mathematical programs with complementarity constraints via nonsmooth reformulations. Journal of Industrial & Management Optimization, 2013, 9 (2) : 305-322. doi: 10.3934/jimo.2013.9.305

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]