September  2015, 5(3): 585-611. doi: 10.3934/mcrf.2015.5.585

Generalized homogeneous systems with applications to nonlinear control: A survey

1. 

Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, United States

2. 

Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, United States

3. 

School of Automation, Southeast University, Nanjing, Jiangsu 210096, China

Received  November 2014 Revised  May 2015 Published  July 2015

This survey provides a unified homogeneous perspective on recent advances in the global stabilization of various nonlinear systems with uncertainty. We first review definitions and properties of homogeneous systems and illustrate how the homogeneous system theory can yield elegant feedback stabilizers for certain homogeneous systems. By taking advantage of homogeneity, we then present the so-called Adding a Power Integrator (AAPI) technique and discuss how it can be employed to recursively construct smooth state feedback stabilizers for uncertain nonlinear systems with uncontrollable linearizations. Based on the AAPI technique, a non-smooth version as well as a generalized version of AAPI approaches can be further developed from a homogeneous viewpoint, resulting in solutions to the global stabilization of genuinely nonlinear systems that may not be controlled, even locally, by any smooth state feedback. In the case of output feedback control, we demonstrate in this survey why the homogeneity is the key in developing a homogeneous domination approach, which has been successful in solving some difficult nonlinear control problems including, for instance, the global stabilization of systems with higher-order nonlinearities via output feedback. Finally, we show how the notion of Homogeneity with Monotone Degrees (HWMD) plays a decisive role in unifying smooth and non-smooth AAPI methods under one framework. Other applications of HWMD will be also summarized and discussed in this paper, along the directions of constructing smooth stabilizers for nonlinear systems in special forms and ``low-gain'' controllers for a class of general upper-triangular systems.
Citation: Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control & Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585
References:
[1]

V. Andrieu, L. Praly and A. Astofi, Homogeneous approximation and recursive observer design and output feedback,, SIAM J. Control Optim., 47 (2008), 1814. doi: 10.1137/060675861. Google Scholar

[2]

V. Andrieu, L. Praly and A. Astolfi, High gain observers with updated gain and homogeneous correction terms,, Automatica, 45 (2009), 422. doi: 10.1016/j.automatica.2008.07.015. Google Scholar

[3]

A. Bacciotti, Local Stabilizability of Nonlinear Control Systems,, World Scientific, (1992). Google Scholar

[4]

A. Bacciotti and L. Roiser, Liapunov Functions and Stability in Control Theory,, volume 267 of Lecture Notes in Control and Information Sciences, (2001). Google Scholar

[5]

D. Bestle and M. Zeitz, Canonical form observer design for nonlinear time-variable systems,, Internat. J. Control, 38 (1983), 419. Google Scholar

[6]

S. Celikovsky and E. Aranda-Bricaire, Constructive nonsmooth stabilization of triangular systems,, Systems Control Lett., 36 (1999), 21. doi: 10.1016/S0167-6911(98)00062-0. Google Scholar

[7]

J. M. Coron and L. Praly, Adding an integrator for the stabilization problem,, Systems Control Lett., 17 (1991), 89. doi: 10.1016/0167-6911(91)90034-C. Google Scholar

[8]

W. P. Dayawansa, Recent advances in the stabilization problem for low dimensional systems,, In Proc. of 1992 IFAC NOLCOS, (1993), 1. doi: 10.1016/B978-0-08-041901-5.50006-3. Google Scholar

[9]

W. P. Dayawansa, C. F. Martin and G. Knowles, Asymptotic stabilization of a class of smooth two-dimensional systems,, SIAM J. Control Optim., 28 (1990), 1321. doi: 10.1137/0328070. Google Scholar

[10]

S. Ding, C. Qian and S. Li, Global stabilization of a class of feedforward systems with lower-order nonlinearities,, IEEE Trans. Autom. Control, 55 (2010), 691. doi: 10.1109/TAC.2009.2037455. Google Scholar

[11]

S. Ding, C. Qian, S. Li and Q. Li, Global stabilization of a class of upper-triangular systems with unbounded or uncontrollabel linearizations,, Internat. J. Robust Nonlinear Control, 21 (2011), 271. doi: 10.1002/rnc.1591. Google Scholar

[12]

J. Franz, Control Design for a Class of Nonlinear Systems Using Limited Information and Its Application to robotics,, Master's thesis, (2009). Google Scholar

[13]

J. P. Gauthier, H. Hammouri and S. Othman, A simple observer for nonlinear systems applications to bioreactors,, IEEE Trans. Autom. Control, 37 (1992), 875. doi: 10.1109/9.256352. Google Scholar

[14]

W. Hahn, Stability of Motion,, Springer-Verlag, (1967). Google Scholar

[15]

H. Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls,, In Differential Equations: Stability and Control, 127 (1991), 249. Google Scholar

[16]

X. Huang, W. Lin and B. Yang, Global finite-time stabilization of a class of uncertain nonlinear systems,, Automatica, 41 (2005), 881. doi: 10.1016/j.automatica.2004.11.036. Google Scholar

[17]

A. Isidori, Nonlinear Control Systems,, Springer-Verlag, (1995). doi: 10.1007/978-1-84628-615-5. Google Scholar

[18]

M. Kawski, Stabilization of nonlinear systems in the plane,, Systems Control Lett., 12 (1989), 169. doi: 10.1016/0167-6911(89)90010-8. Google Scholar

[19]

M. Kawski, Homogeneous stabilizing feedback laws,, Control Theory and Advanced Technology, 6 (1990), 497. Google Scholar

[20]

H. K. Khalil and A. Saberi, Adaptive stabilization of a class of nonlinear systems using high-gain feedback,, IEEE Trans. Autom. Control, 32 (1987), 1031. doi: 10.1109/TAC.1987.1104481. Google Scholar

[21]

P. V. Kokotovic and R. Freeman, Robust Nonlinear Control Design: State-Space and Lyapunov Techniques,, Springer, (1996). doi: 10.1007/978-0-8176-4759-9. Google Scholar

[22]

A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers,, Systems Control Lett., 3 (1983), 47. doi: 10.1016/0167-6911(83)90037-3. Google Scholar

[23]

H. Lei and W. Lin, Robust control of uncertain systems with polynomial nonlinearity by output feedback,, Internat. J. Robust Nonlinear Control, 19 (2009), 692. doi: 10.1002/rnc.1349. Google Scholar

[24]

J. Li, C. Qian and M. Frye, A dual observer design for global output feedback stabilization of nonlinear systems with low-order and high-order nonlinearities,, Internat. J. Robust Nonlinear Control, 19 (2009), 1697. doi: 10.1002/rnc.1401. Google Scholar

[25]

W. Lin and C. Qian, New results on global stabilization of feedforward systems via small feedback,, In Proc. of the 37th IEEE Conference on Decision and Control, (1998), 873. Google Scholar

[26]

W. Lin and X. Li, Synthesis of upper-triangular nonlinear systems with marginally unstable free dynamics using state-dependent Saturation,, Internat. J. Control, 72 (1999), 1078. doi: 10.1080/002071799220434. Google Scholar

[27]

W. Lin and H. Lei, Taking advantage of homogeneity: a unified framework for output feedback control of nonlinear systems (plenary paper),, In Proc. of the 7th IFAC Nonlinear Control Systems Symposium, (2007), 27. Google Scholar

[28]

W. Lin and C. Qian, Adding one power integrator: A tool for global stabilization of high-order lower-triangular systems,, Systems Control Lett., 39 (2000), 339. doi: 10.1016/S0167-6911(99)00115-2. Google Scholar

[29]

W. Lin and C. Qian, Robust regulation of a chain of power integrators perturbed by a lower-triangular vector field,, Internat. J. Robust Nonlinear Control, 10 (2000), 397. doi: 10.1002/(SICI)1099-1239(20000430)10:5<397::AID-RNC477>3.0.CO;2-N. Google Scholar

[30]

R. Marino and P. Tomei, Dynamic output feedback linearization and global stabilization,, Systems Control Lett., 17 (1991), 115. doi: 10.1016/0167-6911(91)90036-E. Google Scholar

[31]

F. Mazenc, Stabilization of feedforward systems approximated by a non-linear chain of integrators,, Systems Control Lett., 32 (1997), 223. doi: 10.1016/S0167-6911(97)00091-1. Google Scholar

[32]

F. Mazenc and L. Praly, Adding integrations, saturated controls, and stabilization for feedforward systems,, IEEE Trans. Autom. Control, 41 (1996), 1559. doi: 10.1109/9.543995. Google Scholar

[33]

F. Mazenc, L. Praly and W. P. Dayawansa, Global stabilization by output feedback: Examples and counterexamples,, Systems Control Lett., 23 (1994), 119. doi: 10.1016/0167-6911(94)90041-8. Google Scholar

[34]

J. Polendo, Global Synthesis of Highly Nonlinear Dynamic Systems with Limited and Uncertain Information,, PhD thesis, (2006). Google Scholar

[35]

J. Polendo and C. Qian, A universal method for robust stabilization of nonlinear systems: unification and extension of smooth and nonsmooth approaches,, In Proc. of the 2006 American Control Conference, (2006), 4285. doi: 10.1109/ACC.2006.1657392. Google Scholar

[36]

J. Polendo and C. Qian, A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback,, Internat. J. Robust Nonlinear Control, 17 (2007), 605. doi: 10.1002/rnc.1139. Google Scholar

[37]

J. Polendo and C. Qian, An expanded method to robustly stabilize uncertain nonlinear systems,, Communications in Information and Systems, 8 (2008), 55. doi: 10.4310/CIS.2008.v8.n1.a4. Google Scholar

[38]

J. Polendo, C. Qian and C. Schrader, Homogeneous domination and decentralized control problem for nonlinear system stabilization,, In Advances in Statistical Control, (2008), 257. doi: 10.1007/978-0-8176-4795-7_13. Google Scholar

[39]

C. Qian, A homogeneous domination approach for global output feedback stabilization of a class of nonlinear system,, In Proc. of the 2005 American Control Conference, (2005), 4708. Google Scholar

[40]

C. Qian and W. Lin, Using small feedback to stabilize a wider class of feedforward systems,, In Proc. of IFAC World Congress, (1999), 309. Google Scholar

[41]

C. Qian and W. Lin, A continuous feedback approach to global strong stabilization of nonlinear systems,, IEEE Trans. Autom. Control, 46 (2001), 1061. doi: 10.1109/9.935058. Google Scholar

[42]

C. Qian and W. Lin, Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm,, IEEE Trans. Autom. Control, 47 (2002), 1710. doi: 10.1109/TAC.2002.803542. Google Scholar

[43]

C. Qian and W. Lin, Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems,, IEEE Trans. Autom. Control, 51 (2006), 1457. doi: 10.1109/TAC.2006.880955. Google Scholar

[44]

C. Qian and W. Lin, Homogeneity with incremental degrees and global stabilisation of a class of high-order upper-triangular systems,, Internat. J. Control, 85 (2012), 1851. doi: 10.1080/00207179.2012.706713. Google Scholar

[45]

L. Roiser, Homogeneous lyapunov function for homogeneous continuous vector field,, Systems Control Lett., 19 (1992), 467. doi: 10.1016/0167-6911(92)90078-7. Google Scholar

[46]

C. Rui, M. Reyhangolu, I. Kolmanovsky, S. Cho and H. N. McClamroch, Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system,, In Proc. of the 36th IEEE Conference on Control and Decision, 4 (1997), 3998. doi: 10.1109/CDC.1997.652490. Google Scholar

[47]

A. Teel, Global stabilization and restricted tracking for multiple integrators with bounded controls,, Systems Control Lett., 18 (1992), 165. doi: 10.1016/0167-6911(92)90001-9. Google Scholar

[48]

A. Teel, A nonlinear small gain theorem for the analysis of control systems with saturation,, IEEE Trans. Autom. Control, 41 (1996), 1256. doi: 10.1109/9.536496. Google Scholar

[49]

W. Tian, C. Qian and H. Du, A generalised homogeneous solution for global stabilisation of a class of non-smooth upper-triangular systems,, Internat. J. Control, 87 (2014), 951. doi: 10.1080/00207179.2013.862347. Google Scholar

[50]

W. Tian, C. Zhang, C. Qian and S. Li, Global stabilization of inherently non-linear systems using continuously differentiable controllers,, Nonlinear Dynamics, 77 (2014), 739. doi: 10.1007/s11071-014-1336-y. Google Scholar

[51]

J. Tsinias, A theorem on global stabilization of nonlinear systems by linear feedback,, Systems Control Lett., 17 (1991), 357. doi: 10.1016/0167-6911(91)90074-O. Google Scholar

[52]

J. Tsinias and M. P. Tzamtzi, An explicit formula of bounded feedback stabilizers for feedforward systems,, Systems Control Lett., 43 (2001), 247. doi: 10.1016/S0167-6911(01)00107-4. Google Scholar

[53]

B. Yang and W. Lin, Robust output feedback stabilization of uncertain nonlinear systems with uncontrollable and unobservable linearization,, IEEE Trans. Autom. Control, 50 (2005), 619. doi: 10.1109/TAC.2005.847084. Google Scholar

[54]

V. I. Zubov, Mathematical Methods for the Study of Automatic Control Systems,, Groningen: Noordhoff, (1964). Google Scholar

show all references

References:
[1]

V. Andrieu, L. Praly and A. Astofi, Homogeneous approximation and recursive observer design and output feedback,, SIAM J. Control Optim., 47 (2008), 1814. doi: 10.1137/060675861. Google Scholar

[2]

V. Andrieu, L. Praly and A. Astolfi, High gain observers with updated gain and homogeneous correction terms,, Automatica, 45 (2009), 422. doi: 10.1016/j.automatica.2008.07.015. Google Scholar

[3]

A. Bacciotti, Local Stabilizability of Nonlinear Control Systems,, World Scientific, (1992). Google Scholar

[4]

A. Bacciotti and L. Roiser, Liapunov Functions and Stability in Control Theory,, volume 267 of Lecture Notes in Control and Information Sciences, (2001). Google Scholar

[5]

D. Bestle and M. Zeitz, Canonical form observer design for nonlinear time-variable systems,, Internat. J. Control, 38 (1983), 419. Google Scholar

[6]

S. Celikovsky and E. Aranda-Bricaire, Constructive nonsmooth stabilization of triangular systems,, Systems Control Lett., 36 (1999), 21. doi: 10.1016/S0167-6911(98)00062-0. Google Scholar

[7]

J. M. Coron and L. Praly, Adding an integrator for the stabilization problem,, Systems Control Lett., 17 (1991), 89. doi: 10.1016/0167-6911(91)90034-C. Google Scholar

[8]

W. P. Dayawansa, Recent advances in the stabilization problem for low dimensional systems,, In Proc. of 1992 IFAC NOLCOS, (1993), 1. doi: 10.1016/B978-0-08-041901-5.50006-3. Google Scholar

[9]

W. P. Dayawansa, C. F. Martin and G. Knowles, Asymptotic stabilization of a class of smooth two-dimensional systems,, SIAM J. Control Optim., 28 (1990), 1321. doi: 10.1137/0328070. Google Scholar

[10]

S. Ding, C. Qian and S. Li, Global stabilization of a class of feedforward systems with lower-order nonlinearities,, IEEE Trans. Autom. Control, 55 (2010), 691. doi: 10.1109/TAC.2009.2037455. Google Scholar

[11]

S. Ding, C. Qian, S. Li and Q. Li, Global stabilization of a class of upper-triangular systems with unbounded or uncontrollabel linearizations,, Internat. J. Robust Nonlinear Control, 21 (2011), 271. doi: 10.1002/rnc.1591. Google Scholar

[12]

J. Franz, Control Design for a Class of Nonlinear Systems Using Limited Information and Its Application to robotics,, Master's thesis, (2009). Google Scholar

[13]

J. P. Gauthier, H. Hammouri and S. Othman, A simple observer for nonlinear systems applications to bioreactors,, IEEE Trans. Autom. Control, 37 (1992), 875. doi: 10.1109/9.256352. Google Scholar

[14]

W. Hahn, Stability of Motion,, Springer-Verlag, (1967). Google Scholar

[15]

H. Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls,, In Differential Equations: Stability and Control, 127 (1991), 249. Google Scholar

[16]

X. Huang, W. Lin and B. Yang, Global finite-time stabilization of a class of uncertain nonlinear systems,, Automatica, 41 (2005), 881. doi: 10.1016/j.automatica.2004.11.036. Google Scholar

[17]

A. Isidori, Nonlinear Control Systems,, Springer-Verlag, (1995). doi: 10.1007/978-1-84628-615-5. Google Scholar

[18]

M. Kawski, Stabilization of nonlinear systems in the plane,, Systems Control Lett., 12 (1989), 169. doi: 10.1016/0167-6911(89)90010-8. Google Scholar

[19]

M. Kawski, Homogeneous stabilizing feedback laws,, Control Theory and Advanced Technology, 6 (1990), 497. Google Scholar

[20]

H. K. Khalil and A. Saberi, Adaptive stabilization of a class of nonlinear systems using high-gain feedback,, IEEE Trans. Autom. Control, 32 (1987), 1031. doi: 10.1109/TAC.1987.1104481. Google Scholar

[21]

P. V. Kokotovic and R. Freeman, Robust Nonlinear Control Design: State-Space and Lyapunov Techniques,, Springer, (1996). doi: 10.1007/978-0-8176-4759-9. Google Scholar

[22]

A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers,, Systems Control Lett., 3 (1983), 47. doi: 10.1016/0167-6911(83)90037-3. Google Scholar

[23]

H. Lei and W. Lin, Robust control of uncertain systems with polynomial nonlinearity by output feedback,, Internat. J. Robust Nonlinear Control, 19 (2009), 692. doi: 10.1002/rnc.1349. Google Scholar

[24]

J. Li, C. Qian and M. Frye, A dual observer design for global output feedback stabilization of nonlinear systems with low-order and high-order nonlinearities,, Internat. J. Robust Nonlinear Control, 19 (2009), 1697. doi: 10.1002/rnc.1401. Google Scholar

[25]

W. Lin and C. Qian, New results on global stabilization of feedforward systems via small feedback,, In Proc. of the 37th IEEE Conference on Decision and Control, (1998), 873. Google Scholar

[26]

W. Lin and X. Li, Synthesis of upper-triangular nonlinear systems with marginally unstable free dynamics using state-dependent Saturation,, Internat. J. Control, 72 (1999), 1078. doi: 10.1080/002071799220434. Google Scholar

[27]

W. Lin and H. Lei, Taking advantage of homogeneity: a unified framework for output feedback control of nonlinear systems (plenary paper),, In Proc. of the 7th IFAC Nonlinear Control Systems Symposium, (2007), 27. Google Scholar

[28]

W. Lin and C. Qian, Adding one power integrator: A tool for global stabilization of high-order lower-triangular systems,, Systems Control Lett., 39 (2000), 339. doi: 10.1016/S0167-6911(99)00115-2. Google Scholar

[29]

W. Lin and C. Qian, Robust regulation of a chain of power integrators perturbed by a lower-triangular vector field,, Internat. J. Robust Nonlinear Control, 10 (2000), 397. doi: 10.1002/(SICI)1099-1239(20000430)10:5<397::AID-RNC477>3.0.CO;2-N. Google Scholar

[30]

R. Marino and P. Tomei, Dynamic output feedback linearization and global stabilization,, Systems Control Lett., 17 (1991), 115. doi: 10.1016/0167-6911(91)90036-E. Google Scholar

[31]

F. Mazenc, Stabilization of feedforward systems approximated by a non-linear chain of integrators,, Systems Control Lett., 32 (1997), 223. doi: 10.1016/S0167-6911(97)00091-1. Google Scholar

[32]

F. Mazenc and L. Praly, Adding integrations, saturated controls, and stabilization for feedforward systems,, IEEE Trans. Autom. Control, 41 (1996), 1559. doi: 10.1109/9.543995. Google Scholar

[33]

F. Mazenc, L. Praly and W. P. Dayawansa, Global stabilization by output feedback: Examples and counterexamples,, Systems Control Lett., 23 (1994), 119. doi: 10.1016/0167-6911(94)90041-8. Google Scholar

[34]

J. Polendo, Global Synthesis of Highly Nonlinear Dynamic Systems with Limited and Uncertain Information,, PhD thesis, (2006). Google Scholar

[35]

J. Polendo and C. Qian, A universal method for robust stabilization of nonlinear systems: unification and extension of smooth and nonsmooth approaches,, In Proc. of the 2006 American Control Conference, (2006), 4285. doi: 10.1109/ACC.2006.1657392. Google Scholar

[36]

J. Polendo and C. Qian, A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback,, Internat. J. Robust Nonlinear Control, 17 (2007), 605. doi: 10.1002/rnc.1139. Google Scholar

[37]

J. Polendo and C. Qian, An expanded method to robustly stabilize uncertain nonlinear systems,, Communications in Information and Systems, 8 (2008), 55. doi: 10.4310/CIS.2008.v8.n1.a4. Google Scholar

[38]

J. Polendo, C. Qian and C. Schrader, Homogeneous domination and decentralized control problem for nonlinear system stabilization,, In Advances in Statistical Control, (2008), 257. doi: 10.1007/978-0-8176-4795-7_13. Google Scholar

[39]

C. Qian, A homogeneous domination approach for global output feedback stabilization of a class of nonlinear system,, In Proc. of the 2005 American Control Conference, (2005), 4708. Google Scholar

[40]

C. Qian and W. Lin, Using small feedback to stabilize a wider class of feedforward systems,, In Proc. of IFAC World Congress, (1999), 309. Google Scholar

[41]

C. Qian and W. Lin, A continuous feedback approach to global strong stabilization of nonlinear systems,, IEEE Trans. Autom. Control, 46 (2001), 1061. doi: 10.1109/9.935058. Google Scholar

[42]

C. Qian and W. Lin, Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm,, IEEE Trans. Autom. Control, 47 (2002), 1710. doi: 10.1109/TAC.2002.803542. Google Scholar

[43]

C. Qian and W. Lin, Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems,, IEEE Trans. Autom. Control, 51 (2006), 1457. doi: 10.1109/TAC.2006.880955. Google Scholar

[44]

C. Qian and W. Lin, Homogeneity with incremental degrees and global stabilisation of a class of high-order upper-triangular systems,, Internat. J. Control, 85 (2012), 1851. doi: 10.1080/00207179.2012.706713. Google Scholar

[45]

L. Roiser, Homogeneous lyapunov function for homogeneous continuous vector field,, Systems Control Lett., 19 (1992), 467. doi: 10.1016/0167-6911(92)90078-7. Google Scholar

[46]

C. Rui, M. Reyhangolu, I. Kolmanovsky, S. Cho and H. N. McClamroch, Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system,, In Proc. of the 36th IEEE Conference on Control and Decision, 4 (1997), 3998. doi: 10.1109/CDC.1997.652490. Google Scholar

[47]

A. Teel, Global stabilization and restricted tracking for multiple integrators with bounded controls,, Systems Control Lett., 18 (1992), 165. doi: 10.1016/0167-6911(92)90001-9. Google Scholar

[48]

A. Teel, A nonlinear small gain theorem for the analysis of control systems with saturation,, IEEE Trans. Autom. Control, 41 (1996), 1256. doi: 10.1109/9.536496. Google Scholar

[49]

W. Tian, C. Qian and H. Du, A generalised homogeneous solution for global stabilisation of a class of non-smooth upper-triangular systems,, Internat. J. Control, 87 (2014), 951. doi: 10.1080/00207179.2013.862347. Google Scholar

[50]

W. Tian, C. Zhang, C. Qian and S. Li, Global stabilization of inherently non-linear systems using continuously differentiable controllers,, Nonlinear Dynamics, 77 (2014), 739. doi: 10.1007/s11071-014-1336-y. Google Scholar

[51]

J. Tsinias, A theorem on global stabilization of nonlinear systems by linear feedback,, Systems Control Lett., 17 (1991), 357. doi: 10.1016/0167-6911(91)90074-O. Google Scholar

[52]

J. Tsinias and M. P. Tzamtzi, An explicit formula of bounded feedback stabilizers for feedforward systems,, Systems Control Lett., 43 (2001), 247. doi: 10.1016/S0167-6911(01)00107-4. Google Scholar

[53]

B. Yang and W. Lin, Robust output feedback stabilization of uncertain nonlinear systems with uncontrollable and unobservable linearization,, IEEE Trans. Autom. Control, 50 (2005), 619. doi: 10.1109/TAC.2005.847084. Google Scholar

[54]

V. I. Zubov, Mathematical Methods for the Study of Automatic Control Systems,, Groningen: Noordhoff, (1964). Google Scholar

[1]

Zbigniew Bartosiewicz, Ülle Kotta, Maris Tőnso, Małgorzata Wyrwas. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Mathematical Control & Related Fields, 2016, 6 (2) : 217-250. doi: 10.3934/mcrf.2016002

[2]

Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689

[3]

Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure & Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347

[4]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[5]

Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225

[6]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. A minimal approach to the theory of global attractors. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2079-2088. doi: 10.3934/dcds.2012.32.2079

[7]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[8]

Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121

[9]

Jason Metcalfe, Jacob Perry. Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 547-556. doi: 10.3934/cpaa.2012.11.547

[10]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[11]

Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015

[12]

P.E. Kloeden. Pitchfork and transcritical bifurcations in systems with homogeneous nonlinearities and an almost periodic time coefficient. Communications on Pure & Applied Analysis, 2004, 3 (2) : 161-173. doi: 10.3934/cpaa.2004.3.161

[13]

Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177

[14]

Hebai Chena, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2019150

[15]

Alessandro Fonda, Rafael Ortega. Positively homogeneous equations in the plane. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 475-482. doi: 10.3934/dcds.2000.6.475

[16]

Arnaud Münch, Ademir Fernando Pazoto. Boundary stabilization of a nonlinear shallow beam: theory and numerical approximation. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 197-219. doi: 10.3934/dcdsb.2008.10.197

[17]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[18]

Burak Ordin. The modified cutting angle method for global minimization of increasing positively homogeneous functions over the unit simplex. Journal of Industrial & Management Optimization, 2009, 5 (4) : 825-834. doi: 10.3934/jimo.2009.5.825

[19]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic & Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[20]

Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]