June  2014, 4(2): 203-259. doi: 10.3934/mcrf.2014.4.203

Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability

1. 

Université d'Orléans, Bâtiment de Mathématiques (MAPMO), B.P. 6759, 45067 Orléans cedex 2, France

Received  January 2013 Revised  July 2013 Published  February 2014

In the discrete setting of one-dimensional finite-differences we prove a Carleman estimate for a semi-discretization of the parabolic operator $\partial_t-\partial_x (c\partial_x )$ where the diffusion coefficient $c$ has a jump. As a consequence of this Carleman estimate, we deduce consistent null-controllability results for classes of semi-linear parabolic equations.
Citation: Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203
References:
[1]

A. Benabdallah, Y. Dermenjian and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem,, J. Math. Anal. Appl., 336 (2007), 865. doi: 10.1016/j.jmaa.2007.03.024. Google Scholar

[2]

F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations,, J. Math. Pur. Appl., 93 (2010), 240. doi: 10.1016/j.matpur.2009.11.003. Google Scholar

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for the elliptic operators in arbitrary dimension and applications,, SIAM J. Control Optim, 48 (2010), 5357. doi: 10.1137/100784278. Google Scholar

[4]

F. Boyer and J. Le Rousseau, Carleman Estimates for Semi-Discrete Parabolic Operators and Application to the Controllability of Semi-Linear Semi-Discrete Parabolic Equations,, prep. (2012)., (2012). Google Scholar

[5]

Y. Chitour and E. Trélat, Controllability of partial differential equations,, Advanced topics in control systems theory, 328 (2006), 171. doi: 10.1007/11583592_5. Google Scholar

[6]

E. Fernández-Cara and S. Guerro, Global Carleman inequalities for parabolic systems and application to controllability,, SIAM J. Control Optim., 45 (2006), 1399. doi: 10.1137/S0363012904439696. Google Scholar

[7]

E. Fernández-Cara and E. Zuazua, On the null controllability of the one-dimensional heat equation with BV coefficients,, Comput. Appl. Math., 21 (2002), 167. Google Scholar

[8]

A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series, (1996). Google Scholar

[9]

T. Nguyen, The uniform controllability property of semidiscrete approximations for the parabolic distributed parameter systems in Banach,, prep. (2012)., (2012). Google Scholar

[10]

J. Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients,, J. Differential Equations, 233 (2007), 417. doi: 10.1016/j.jde.2006.10.005. Google Scholar

[11]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712. doi: 10.1051/cocv/2011168. Google Scholar

[12]

G. Lebeau and L. Robbiano, Contrôle exact de léquation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335. doi: 10.1080/03605309508821097. Google Scholar

[13]

J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations,, Arch. Rational Mech. Anal., 195 (2010), 953. doi: 10.1007/s00205-009-0242-9. Google Scholar

[14]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control system,, Systems and Control Letters, 55 (2006), 597. doi: 10.1016/j.sysconle.2006.01.004. Google Scholar

[15]

A. Lopez and E. Zuazua, Some new results related to the null controllability of the 1-D heat equation,, Sem. EDP, VIII (1998), 1. Google Scholar

[16]

E. Zuazua, Control and numerical approximation of the wave and heat equations,, International Congress of Mathematicians, III (2006), 1389. Google Scholar

show all references

References:
[1]

A. Benabdallah, Y. Dermenjian and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem,, J. Math. Anal. Appl., 336 (2007), 865. doi: 10.1016/j.jmaa.2007.03.024. Google Scholar

[2]

F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations,, J. Math. Pur. Appl., 93 (2010), 240. doi: 10.1016/j.matpur.2009.11.003. Google Scholar

[3]

F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for the elliptic operators in arbitrary dimension and applications,, SIAM J. Control Optim, 48 (2010), 5357. doi: 10.1137/100784278. Google Scholar

[4]

F. Boyer and J. Le Rousseau, Carleman Estimates for Semi-Discrete Parabolic Operators and Application to the Controllability of Semi-Linear Semi-Discrete Parabolic Equations,, prep. (2012)., (2012). Google Scholar

[5]

Y. Chitour and E. Trélat, Controllability of partial differential equations,, Advanced topics in control systems theory, 328 (2006), 171. doi: 10.1007/11583592_5. Google Scholar

[6]

E. Fernández-Cara and S. Guerro, Global Carleman inequalities for parabolic systems and application to controllability,, SIAM J. Control Optim., 45 (2006), 1399. doi: 10.1137/S0363012904439696. Google Scholar

[7]

E. Fernández-Cara and E. Zuazua, On the null controllability of the one-dimensional heat equation with BV coefficients,, Comput. Appl. Math., 21 (2002), 167. Google Scholar

[8]

A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations,, Lecture Notes Series, (1996). Google Scholar

[9]

T. Nguyen, The uniform controllability property of semidiscrete approximations for the parabolic distributed parameter systems in Banach,, prep. (2012)., (2012). Google Scholar

[10]

J. Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients,, J. Differential Equations, 233 (2007), 417. doi: 10.1016/j.jde.2006.10.005. Google Scholar

[11]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712. doi: 10.1051/cocv/2011168. Google Scholar

[12]

G. Lebeau and L. Robbiano, Contrôle exact de léquation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335. doi: 10.1080/03605309508821097. Google Scholar

[13]

J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations,, Arch. Rational Mech. Anal., 195 (2010), 953. doi: 10.1007/s00205-009-0242-9. Google Scholar

[14]

S. Labbé and E. Trélat, Uniform controllability of semidiscrete approximations of parabolic control system,, Systems and Control Letters, 55 (2006), 597. doi: 10.1016/j.sysconle.2006.01.004. Google Scholar

[15]

A. Lopez and E. Zuazua, Some new results related to the null controllability of the 1-D heat equation,, Sem. EDP, VIII (1998), 1. Google Scholar

[16]

E. Zuazua, Control and numerical approximation of the wave and heat equations,, International Congress of Mathematicians, III (2006), 1389. Google Scholar

[1]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[2]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[3]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

[4]

Sylvie Benzoni-Gavage, Pierre Huot. Existence of semi-discrete shocks. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 163-190. doi: 10.3934/dcds.2002.8.163

[5]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[6]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[7]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[8]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks & Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[9]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[10]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[11]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019031

[12]

Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks & Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263

[13]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[14]

Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699

[15]

Feng Bao, Yanzhao Cao, Weidong Zhao. A first order semi-discrete algorithm for backward doubly stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1297-1313. doi: 10.3934/dcdsb.2015.20.1297

[16]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[17]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[18]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[19]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[20]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]