March  2014, 4(1): 115-124. doi: 10.3934/mcrf.2014.4.115

Algebraic characterization of autonomy and controllability of behaviours of spatially invariant systems

1. 

Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE

Received  August 2012 Revised  December 2012 Published  December 2013

We give algebraic characterizations of the properties of autonomy and of controllability of behaviours of spatially invariant dynamical systems, consisting of distributional solutions $w$, that are periodic in the spatial variables, to a system of partial differential equations $$ M\left(\frac{\partial}{\partial x_1},\cdots, \frac{\partial}{\partial x_d} , \frac{\partial}{\partial t}\right) w=0, $$ corresponding to a polynomial matrix $M\in ({\mathbb{C}}[\xi_1,\dots, \xi_d, \tau])^{m\times n}$.
Citation: Amol Sasane. Algebraic characterization of autonomy and controllability of behaviours of spatially invariant systems. Mathematical Control & Related Fields, 2014, 4 (1) : 115-124. doi: 10.3934/mcrf.2014.4.115
References:
[1]

J. A. Ball and O. J. Staffans, Conservative state-space realizations of dissipative system behaviors,, Integral Equations Operator Theory, 54 (2006), 151. doi: 10.1007/s00020-003-1356-3. Google Scholar

[2]

Madhu Belur, Control in a Behavioral Context,, Ph.D Thesis, (2003). Google Scholar

[3]

R. W. Carroll, Abstract Methods in Partial Differential Equations,, Harper's Series in Modern Mathematics, (1969). Google Scholar

[4]

R. F. Curtain, O. V. Iftime and H. J. Zwart, System theoretic properties of a class of spatially invariant systems,, Automatica J. IFAC, 45 (2009), 1619. doi: 10.1016/j.automatica.2009.03.005. Google Scholar

[5]

R. F. Curtain and A. J. Sasane, On Riccati equations in Banach algebras,, SIAM J. Control Optim., 49 (2011), 464. doi: 10.1137/100806011. Google Scholar

[6]

W. F. Donoghue, Jr., Distributions and Fourier Transforms,, Pure and Applied Mathematics, (1969). Google Scholar

[7]

L. Hörmander, Null solutions of partial differential equations,, Arch. Rational Mech. Anal., 4 (1960), 255. Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis,, 2nd edition, (1990). Google Scholar

[9]

U. Oberst and M. Scheicher, Time-autonomy and time-controllability of discrete multidimensional behaviors,, Internat. J. Control, 85 (2012), 990. doi: 10.1080/00207179.2012.673135. Google Scholar

[10]

J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach,, Texts in Applied Mathematics, (1998). Google Scholar

[11]

H. K. Pillai and S. Shankar, A behavioral approach to control of distributed systems,, SIAM J. Control Optim., 37 (1999), 388. doi: 10.1137/S0363012997321784. Google Scholar

[12]

A. J. Sasane, E. G. F. Thomas and J. C. Willems, Time-autonomy versus time-controllability,, Systems Control Lett., 45 (2002), 145. doi: 10.1016/S0167-6911(01)00174-8. Google Scholar

show all references

References:
[1]

J. A. Ball and O. J. Staffans, Conservative state-space realizations of dissipative system behaviors,, Integral Equations Operator Theory, 54 (2006), 151. doi: 10.1007/s00020-003-1356-3. Google Scholar

[2]

Madhu Belur, Control in a Behavioral Context,, Ph.D Thesis, (2003). Google Scholar

[3]

R. W. Carroll, Abstract Methods in Partial Differential Equations,, Harper's Series in Modern Mathematics, (1969). Google Scholar

[4]

R. F. Curtain, O. V. Iftime and H. J. Zwart, System theoretic properties of a class of spatially invariant systems,, Automatica J. IFAC, 45 (2009), 1619. doi: 10.1016/j.automatica.2009.03.005. Google Scholar

[5]

R. F. Curtain and A. J. Sasane, On Riccati equations in Banach algebras,, SIAM J. Control Optim., 49 (2011), 464. doi: 10.1137/100806011. Google Scholar

[6]

W. F. Donoghue, Jr., Distributions and Fourier Transforms,, Pure and Applied Mathematics, (1969). Google Scholar

[7]

L. Hörmander, Null solutions of partial differential equations,, Arch. Rational Mech. Anal., 4 (1960), 255. Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis,, 2nd edition, (1990). Google Scholar

[9]

U. Oberst and M. Scheicher, Time-autonomy and time-controllability of discrete multidimensional behaviors,, Internat. J. Control, 85 (2012), 990. doi: 10.1080/00207179.2012.673135. Google Scholar

[10]

J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach,, Texts in Applied Mathematics, (1998). Google Scholar

[11]

H. K. Pillai and S. Shankar, A behavioral approach to control of distributed systems,, SIAM J. Control Optim., 37 (1999), 388. doi: 10.1137/S0363012997321784. Google Scholar

[12]

A. J. Sasane, E. G. F. Thomas and J. C. Willems, Time-autonomy versus time-controllability,, Systems Control Lett., 45 (2002), 145. doi: 10.1016/S0167-6911(01)00174-8. Google Scholar

[1]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[2]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

[3]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[4]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[5]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019175

[6]

N. Kamran, K. Tenenblat. Periodic systems for the higher-dimensional Laplace transformation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 359-378. doi: 10.3934/dcds.1998.4.359

[7]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[8]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[9]

Yacine Chitour, Jean-Michel Coron, Mauro Garavello. On conditions that prevent steady-state controllability of certain linear partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 643-672. doi: 10.3934/dcds.2006.14.643

[10]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[11]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[12]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[13]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[14]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[15]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[16]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[17]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[18]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[19]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[20]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]