March  2013, 3(1): 1-19. doi: 10.3934/mcrf.2013.3.1

Compositions of passive boundary control systems

1. 

Department of Mathematics and Systems Analysis, Aalto University School of Science, PB 11100, 00076-Aalto, Finland, Finland

Received  December 2011 Revised  May 2012 Published  February 2013

We show under mild assumptions that a composition of internally well-posed, impedance passive (or conservative) boundary control systems through Kirchhoff type connections is also an internally well-posed, impedance passive (resp., conservative) boundary control system. The proof is based on results of Malinen and Staffans [21]. We also present an example of such composition involving Webster's equation on a Y-shaped graph.
Citation: Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1
References:
[1]

A. Aalto and J. Malinen, Wave propagation in networks: A system theoretic approach,, in, (2011), 8854. Google Scholar

[2]

W. Arendt, C. Batty, M. Hieber and F. Neubrander, "Vector-valued Laplace Transforms and Cauchy Problems,", Monographs in Mathematics, 96 (2001). Google Scholar

[3]

J. Cervera, A. J. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures,, Automatica J. of IFAC, 43 (2007), 212. doi: 10.1016/j.automatica.2006.08.014. Google Scholar

[4]

R. F. Curtain and H. Zwart, "An Introduction to Infinite-Dimensional Linear Systems Theory,", Texts in Applied Mathematics, 21 (1995). doi: 10.1007/978-1-4612-4224-6. Google Scholar

[5]

V. Derkach, S. Hassi, M. Malamud and H. de Snoo, Boundary relations and their Weyl families,, Transactions of the American Mathematical Society, 358 (2006), 5351. doi: 10.1090/S0002-9947-06-04033-5. Google Scholar

[6]

M. Gugat, G. Leugering, K. Schittkowski and E. J. P. Georg Schmidt, Modelling, stabilization, and control of flow in networks of open channels,, in, (2001), 251. Google Scholar

[7]

K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks,, Networks and Heterogeneous Media, 3 (2008), 709. doi: 10.3934/nhm.2008.3.709. Google Scholar

[8]

H. Fattorini, Boundary control systems,, SIAM Journal of Control, 6 (1968), 349. Google Scholar

[9]

V. I. Gorbachuk and M. L. Gorbachuk, "Boundary Value Problems for Operator Differential Equations,", Mathematics and its Applications (Soviet Series), 48 (1991). Google Scholar

[10]

G. Greiner, Perturbing the boundary conditions of a generator,, Houston Journal of Mathematics, 13 (1987), 213. Google Scholar

[11]

A. Hannukainen, T. Lukkari, J. Malinen and P. Palo, Vowel formants from the wave equation,, Journal of Acoustical Society of America Express Letters, 122 (2007). Google Scholar

[12]

R. Hundhammer and G. Leugering, Instantaneous control of vibrating string networks,, in, (2001), 229. Google Scholar

[13]

P. Kuchment and H. Zeng, Convergence of spectra of mesoscopic systems collapsing onto a graph,, Journal of Mathematical Analysis and Applications, 258 (2001), 671. doi: 10.1006/jmaa.2000.7415. Google Scholar

[14]

Mikael Kurula, "Towards Input/Output-Free Modelling of Linear Infinite-Dimensional Systems in Continuous Time,", Ph.D thesis, (2010). Google Scholar

[15]

M. Kurula, H. Zwart, A. van der Schaft and J. Behrndt, Dirac structures and their composition on Hilbert spaces,, Journal of Mathematical Analysis and Applications, 372 (2010), 402. doi: 10.1016/j.jmaa.2010.07.004. Google Scholar

[16]

Y. Latushkin and V. Pivovarchik, Scattering in a forked-shaped waveguide,, Integral Equations and Operator Theory, 61 (2008), 365. doi: 10.1007/s00020-008-1597-2. Google Scholar

[17]

M. S. Livšic, "Operators, Oscillations, Waves (Open Systems),", Translations of Mathematical Monographs, (1973). Google Scholar

[18]

T. Lukkari and J. Malinen, Webster's equation with curvature and dissipation,, preprint, (2012). Google Scholar

[19]

J. Malinen, Conservativivity of time-flow invertible and boundary control systems,, Helsinki University of Technology Institute of Mathematics Research Reports, (2004). Google Scholar

[20]

J. Malinen and O. Staffans, Conservative boundary control systems,, Journal of Differential Equations, 231 (2006), 290. doi: 10.1016/j.jde.2006.05.012. Google Scholar

[21]

J. Malinen and O. Staffans, Impedance passive and conservative boundary control systems,, Complex Analysis and Operator Theory, 1 (2007), 279. doi: 10.1007/s11785-006-0009-3. Google Scholar

[22]

J. Malinen, O. Staffans and G. Weiss, When is a linear system conservative,, Quarterly of Applied Mathematics, 64 (2006), 61. Google Scholar

[23]

J. Rubinstein and M. Schatzman, Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum,, Archive for Rational Mechanics and Analysis, 160 (2001), 271. doi: 10.1007/s002050100164. Google Scholar

[24]

D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach,, Transactions of the American Mathematical Society, 300 (1987), 383. doi: 10.2307/2000351. Google Scholar

[25]

D. Salamon, Realization theory in Hilbert space,, Mathematical Systems Theory, 21 (1989), 147. doi: 10.1007/BF02088011. Google Scholar

[26]

O. Staffans, "Well-Posed Linear Systems,", Encyclopedia of Mathematics and its Applications, 103 (2005). doi: 10.1017/CBO9780511543197. Google Scholar

[27]

Javier Villegas, "A Port-Hamiltonian Approach to Distributed Parameter Systems,", Ph.D thesis, (2007). Google Scholar

[28]

G. Weiss, Regular linear systems with feedback,, Mathematics of Control, 7 (1994), 23. doi: 10.1007/BF01211484. Google Scholar

[29]

G. Weiss and X. Zhao, Well-posedness and controllability of a class of coupled linear systems,, SIAM Journal of Control and Optimization, 48 (2009), 2719. doi: 10.1137/090752833. Google Scholar

[30]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain,, ESAIM: Control, 16 (2010), 1077. doi: 10.1051/cocv/2009036. Google Scholar

show all references

References:
[1]

A. Aalto and J. Malinen, Wave propagation in networks: A system theoretic approach,, in, (2011), 8854. Google Scholar

[2]

W. Arendt, C. Batty, M. Hieber and F. Neubrander, "Vector-valued Laplace Transforms and Cauchy Problems,", Monographs in Mathematics, 96 (2001). Google Scholar

[3]

J. Cervera, A. J. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures,, Automatica J. of IFAC, 43 (2007), 212. doi: 10.1016/j.automatica.2006.08.014. Google Scholar

[4]

R. F. Curtain and H. Zwart, "An Introduction to Infinite-Dimensional Linear Systems Theory,", Texts in Applied Mathematics, 21 (1995). doi: 10.1007/978-1-4612-4224-6. Google Scholar

[5]

V. Derkach, S. Hassi, M. Malamud and H. de Snoo, Boundary relations and their Weyl families,, Transactions of the American Mathematical Society, 358 (2006), 5351. doi: 10.1090/S0002-9947-06-04033-5. Google Scholar

[6]

M. Gugat, G. Leugering, K. Schittkowski and E. J. P. Georg Schmidt, Modelling, stabilization, and control of flow in networks of open channels,, in, (2001), 251. Google Scholar

[7]

K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks,, Networks and Heterogeneous Media, 3 (2008), 709. doi: 10.3934/nhm.2008.3.709. Google Scholar

[8]

H. Fattorini, Boundary control systems,, SIAM Journal of Control, 6 (1968), 349. Google Scholar

[9]

V. I. Gorbachuk and M. L. Gorbachuk, "Boundary Value Problems for Operator Differential Equations,", Mathematics and its Applications (Soviet Series), 48 (1991). Google Scholar

[10]

G. Greiner, Perturbing the boundary conditions of a generator,, Houston Journal of Mathematics, 13 (1987), 213. Google Scholar

[11]

A. Hannukainen, T. Lukkari, J. Malinen and P. Palo, Vowel formants from the wave equation,, Journal of Acoustical Society of America Express Letters, 122 (2007). Google Scholar

[12]

R. Hundhammer and G. Leugering, Instantaneous control of vibrating string networks,, in, (2001), 229. Google Scholar

[13]

P. Kuchment and H. Zeng, Convergence of spectra of mesoscopic systems collapsing onto a graph,, Journal of Mathematical Analysis and Applications, 258 (2001), 671. doi: 10.1006/jmaa.2000.7415. Google Scholar

[14]

Mikael Kurula, "Towards Input/Output-Free Modelling of Linear Infinite-Dimensional Systems in Continuous Time,", Ph.D thesis, (2010). Google Scholar

[15]

M. Kurula, H. Zwart, A. van der Schaft and J. Behrndt, Dirac structures and their composition on Hilbert spaces,, Journal of Mathematical Analysis and Applications, 372 (2010), 402. doi: 10.1016/j.jmaa.2010.07.004. Google Scholar

[16]

Y. Latushkin and V. Pivovarchik, Scattering in a forked-shaped waveguide,, Integral Equations and Operator Theory, 61 (2008), 365. doi: 10.1007/s00020-008-1597-2. Google Scholar

[17]

M. S. Livšic, "Operators, Oscillations, Waves (Open Systems),", Translations of Mathematical Monographs, (1973). Google Scholar

[18]

T. Lukkari and J. Malinen, Webster's equation with curvature and dissipation,, preprint, (2012). Google Scholar

[19]

J. Malinen, Conservativivity of time-flow invertible and boundary control systems,, Helsinki University of Technology Institute of Mathematics Research Reports, (2004). Google Scholar

[20]

J. Malinen and O. Staffans, Conservative boundary control systems,, Journal of Differential Equations, 231 (2006), 290. doi: 10.1016/j.jde.2006.05.012. Google Scholar

[21]

J. Malinen and O. Staffans, Impedance passive and conservative boundary control systems,, Complex Analysis and Operator Theory, 1 (2007), 279. doi: 10.1007/s11785-006-0009-3. Google Scholar

[22]

J. Malinen, O. Staffans and G. Weiss, When is a linear system conservative,, Quarterly of Applied Mathematics, 64 (2006), 61. Google Scholar

[23]

J. Rubinstein and M. Schatzman, Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum,, Archive for Rational Mechanics and Analysis, 160 (2001), 271. doi: 10.1007/s002050100164. Google Scholar

[24]

D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach,, Transactions of the American Mathematical Society, 300 (1987), 383. doi: 10.2307/2000351. Google Scholar

[25]

D. Salamon, Realization theory in Hilbert space,, Mathematical Systems Theory, 21 (1989), 147. doi: 10.1007/BF02088011. Google Scholar

[26]

O. Staffans, "Well-Posed Linear Systems,", Encyclopedia of Mathematics and its Applications, 103 (2005). doi: 10.1017/CBO9780511543197. Google Scholar

[27]

Javier Villegas, "A Port-Hamiltonian Approach to Distributed Parameter Systems,", Ph.D thesis, (2007). Google Scholar

[28]

G. Weiss, Regular linear systems with feedback,, Mathematics of Control, 7 (1994), 23. doi: 10.1007/BF01211484. Google Scholar

[29]

G. Weiss and X. Zhao, Well-posedness and controllability of a class of coupled linear systems,, SIAM Journal of Control and Optimization, 48 (2009), 2719. doi: 10.1137/090752833. Google Scholar

[30]

H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain,, ESAIM: Control, 16 (2010), 1077. doi: 10.1051/cocv/2009036. Google Scholar

[1]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[2]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[3]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[4]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[5]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[6]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[7]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[8]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[9]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[10]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[11]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

[12]

Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056

[13]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[14]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[15]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[16]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[17]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[18]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[19]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[20]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]