June  2012, 2(2): 183-194. doi: 10.3934/mcrf.2012.2.183

Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs

1. 

Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, China, China

Received  March 2011 Revised  November 2011 Published  May 2012

In this paper, we study the finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Instead of the standard error estimates under $L^2$- or $H^1$- norm, we apply the goal-oriented error estimates in order to avoid the difficulties which are generated by the nonsmoothness of the problem. We derive the a priori error estimates of the goal function, and the error bound is $O(h^2)$, which is the same as one for some well known quadratic optimal control problems governed by linear elliptic PDEs. Moreover, two kinds of practical algorithms are introduced to solve the underlying problem. Numerical experiments are provided to confirm our theoretical results.
Citation: Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183
References:
[1]

A. K. Aziz, A. B. Stephens and M. Suri, Numerical methods for reaction-diffusion problems with nondifferentiable kinetics,, Numer. Math., 53 (1988), 1. doi: 10.1007/BF01395875. Google Scholar

[2]

R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods,, Acta Numerica, 10 (2001), 1. doi: 10.1017/S0962492901000010. Google Scholar

[3]

B. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems,, SIAM J. Control Optim., 37 (1999), 1176. doi: 10.1137/S0363012997328609. Google Scholar

[4]

J. Burke, A. Lewis and M. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization,, SIAM J. Optim., 15 (2005), 751. doi: 10.1137/030601296. Google Scholar

[5]

L. Chang, W. Gong and N. Yan, Finite element method for a nonsmooth elliptic equation,, Frontiers of Mathematics in China, 5 (2010), 191. Google Scholar

[6]

X. Chen, First order conditions for nonsmooth discretized constrained optimal control problems,, SIAM J. Control Optim., 42 (2004), 2004. doi: 10.1137/S0363012902414160. Google Scholar

[7]

X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations,, SIAM J. Numer. Anal., 38 (2000), 1200. doi: 10.1137/S0036142999356719. Google Scholar

[8]

F. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983). Google Scholar

[9]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,, J. Math. Anal. Appl., 44 (1973), 28. doi: 10.1016/0022-247X(73)90022-X. Google Scholar

[10]

M. Hintermüller, A proximal bundle method based on approximate subgradients,, Computational Optimization and Applications, 20 (2001), 245. doi: 10.1023/A:1011259017643. Google Scholar

[11]

M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, "Optimization with PDE Constraints,", Mathematical Modelling: Theory and Applications, 23 (2009). Google Scholar

[12]

F. Kikuchi, Finite element analysis of a nondifferentiable nonlinear problem related to MHD equilibria,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1988), 77. Google Scholar

[13]

F. Kikuchi, K. Nakazato and T. Ushijima, Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria,, Japan J. Appl. Math., 1 (1984), 369. Google Scholar

[14]

R. Li and W. B. Liu, AFEPack, Numerical software., Available from: \url{http://dsec.pku.edu.cn/~rli/software_e.php}., (). Google Scholar

[15]

J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Translated from the French by S. K. Mitter, (1971). Google Scholar

[16]

W. B. Liu and N. Yan, "Adaptive Finite Element Methods for Optimal Control Governed by PDEs,", Science Press, (2008). Google Scholar

[17]

J. Shen, Z.-Q. Xia and L.-P. Pang, A proximal bundle method with inexact data for convex nondifferentiable minimization,, Nonlinear Analysis, 66 (2007), 2016. doi: 10.1016/j.na.2006.02.039. Google Scholar

[18]

D. Tiba, "Lectures on the Optimal Control of Elliptic Equations,", University of Jyvaskyla Press, (1995). Google Scholar

show all references

References:
[1]

A. K. Aziz, A. B. Stephens and M. Suri, Numerical methods for reaction-diffusion problems with nondifferentiable kinetics,, Numer. Math., 53 (1988), 1. doi: 10.1007/BF01395875. Google Scholar

[2]

R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods,, Acta Numerica, 10 (2001), 1. doi: 10.1017/S0962492901000010. Google Scholar

[3]

B. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems,, SIAM J. Control Optim., 37 (1999), 1176. doi: 10.1137/S0363012997328609. Google Scholar

[4]

J. Burke, A. Lewis and M. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization,, SIAM J. Optim., 15 (2005), 751. doi: 10.1137/030601296. Google Scholar

[5]

L. Chang, W. Gong and N. Yan, Finite element method for a nonsmooth elliptic equation,, Frontiers of Mathematics in China, 5 (2010), 191. Google Scholar

[6]

X. Chen, First order conditions for nonsmooth discretized constrained optimal control problems,, SIAM J. Control Optim., 42 (2004), 2004. doi: 10.1137/S0363012902414160. Google Scholar

[7]

X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations,, SIAM J. Numer. Anal., 38 (2000), 1200. doi: 10.1137/S0036142999356719. Google Scholar

[8]

F. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983). Google Scholar

[9]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,, J. Math. Anal. Appl., 44 (1973), 28. doi: 10.1016/0022-247X(73)90022-X. Google Scholar

[10]

M. Hintermüller, A proximal bundle method based on approximate subgradients,, Computational Optimization and Applications, 20 (2001), 245. doi: 10.1023/A:1011259017643. Google Scholar

[11]

M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, "Optimization with PDE Constraints,", Mathematical Modelling: Theory and Applications, 23 (2009). Google Scholar

[12]

F. Kikuchi, Finite element analysis of a nondifferentiable nonlinear problem related to MHD equilibria,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1988), 77. Google Scholar

[13]

F. Kikuchi, K. Nakazato and T. Ushijima, Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria,, Japan J. Appl. Math., 1 (1984), 369. Google Scholar

[14]

R. Li and W. B. Liu, AFEPack, Numerical software., Available from: \url{http://dsec.pku.edu.cn/~rli/software_e.php}., (). Google Scholar

[15]

J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Translated from the French by S. K. Mitter, (1971). Google Scholar

[16]

W. B. Liu and N. Yan, "Adaptive Finite Element Methods for Optimal Control Governed by PDEs,", Science Press, (2008). Google Scholar

[17]

J. Shen, Z.-Q. Xia and L.-P. Pang, A proximal bundle method with inexact data for convex nondifferentiable minimization,, Nonlinear Analysis, 66 (2007), 2016. doi: 10.1016/j.na.2006.02.039. Google Scholar

[18]

D. Tiba, "Lectures on the Optimal Control of Elliptic Equations,", University of Jyvaskyla Press, (1995). Google Scholar

[1]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[2]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[3]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[4]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[5]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[6]

Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91

[7]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control & Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[8]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[9]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[10]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[11]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[12]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[13]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[14]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[15]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[16]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[17]

Ahmad Ahmad Ali, Klaus Deckelnick, Michael Hinze. Error analysis for global minima of semilinear optimal control problems. Mathematical Control & Related Fields, 2018, 8 (1) : 195-215. doi: 10.3934/mcrf.2018009

[18]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[19]

Patrick Henning, Mario Ohlberger. Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 119-150. doi: 10.3934/dcdss.2015.8.119

[20]

Hamid Reza Marzban, Hamid Reza Tabrizidooz. Solution of nonlinear delay optimal control problems using a composite pseudospectral collocation method. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1379-1389. doi: 10.3934/cpaa.2010.9.1379

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]