June  2011, 1(2): 189-230. doi: 10.3934/mcrf.2011.1.189

Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions

1. 

Department of Mathematics, Iowa State University, Ames, IA 50011, United States

2. 

Department of Mathematics, Colorado State University, Ft. Collins, CO 80523, United States

Received  October 2010 Revised  April 2011 Published  June 2011

Exact controllability of a multilayer plate system with free boundary conditions are obtained by the method of Carleman estimates. The multilayer plate system is a natural multilayer generalization of a three-layer "sandwich plate'' system due to Rao and Nakra. In the multilayer version, $m$ shear deformable layers alternate with $m+1$ layers modeled under Kirchoff plate assumptions. The resulting system involves $m+1$ Lamé systems coupled with a scalar Kirchhoff plate equation. The controls are taken to be distributed in a neighborhood of the boundary. This paper is the sequel to [2] in which only clamped and hinged boundary conditions are considered.
Citation: Scott W. Hansen, Oleg Yu Imanuvilov. Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions. Mathematical Control & Related Fields, 2011, 1 (2) : 189-230. doi: 10.3934/mcrf.2011.1.189
References:
[1]

S. W. Hansen, Several related models for multilayer sandwich plates,, Math. Models Methods Appl. Sci., 14 (2004), 1103. doi: 10.1142/S0218202504003568. Google Scholar

[2]

S. W. Hansen and O. Yu. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions,, to appear, (). Google Scholar

[3]

S. W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam,, Discrete Contin. Dynam. Syst., 2005 (): 365. Google Scholar

[4]

L. Hörmander, "Linear Partial Differential Equations,", Springer-Verlag, (1963). Google Scholar

[5]

O. Yu. Imanuvilov and J.-P. Puel, Global carleman estimates for weak solutions of elliptic nonhomogeneous dirichlet problems,, Int. Math. Res. Not., 2003 (): 883. doi: 10.1155/S107379280321117X. Google Scholar

[6]

O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations,, Asymptotic Analysis, 32 (2002), 185. Google Scholar

[7]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates and the non-stationary Lamé system and the application to an inverse problem,, ESIAM COCV, 11 (2005), 1. doi: 10.1051/cocv:2004030. Google Scholar

[8]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the Lame system with the stress boundary condition,, Publ. Research Inst. Math Sciences, 43 (2007), 1023. doi: 10.2977/prims/1201012379. Google Scholar

[9]

V. Komornik, A new method of exact controllability in short time and applications,, Ann. Fac. Sci. Toulouse Math. (5), 10 (1989), 415. Google Scholar

[10]

H. Kumano-go, "Pseudodifferential Operators,", MIT Press, (1981). Google Scholar

[11]

J. E. Lagnese, "Boundary Stabilization of Thin Plates,", SIAM Studies in Applied Mathematics, 10 (). Google Scholar

[12]

J. E. Lagnese and J.-L Lions, "Modelling, Analysis and Control of Thin Plates,", Recherches en Mathématiques Appliquées, 6 (1988). Google Scholar

[13]

I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only on $\Delta$|$\Sigma$ and homogeneous boundary displacement,, J. Diff. Eqns., 93 (1991), 62. doi: 10.1016/0022-0396(91)90022-2. Google Scholar

[14]

I. Lasiecka and R. Triggiani, Sharp regularity for elastic and thermoelastic Kirchoff equations with free boundary conditions,, Rocky Mountain J. Math., 30 (2000), 981. doi: 10.1216/rmjm/1021477256. Google Scholar

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur, (French) [Exact control of the heat equation],, Séminaire sur les Équations aux Dérivées Partielles, (1995). Google Scholar

[16]

J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Springer-Verlag, (1971). Google Scholar

[17]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Review, 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[18]

Y. V. K. S. Rao and B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores,, J. Sound Vibr., 34 (1974), 309. doi: 10.1016/S0022-460X(74)80315-9. Google Scholar

[19]

R. Rajaram, Exact boundary controllability results for a Rao-Nakra sandwich beam,, Systems Control Lett., 56 (2007), 558. doi: 10.1016/j.sysconle.2007.03.007. Google Scholar

[20]

M. Taylor, "Pseudodifferential Operators,", Princeton Mathematical Series, 34,, Princeton University Press, (1981). Google Scholar

[21]

D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems,, J. Math. Pures Appl. (9), 75 (1996), 367. Google Scholar

[22]

X. Zhang, Exact controllability of the semilinear plate equations,, Asymptot. Anal., 27 (2001), 95. Google Scholar

[23]

X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities,, SIAM J. Control and Optimization, 39 (2000), 812. doi: 10.1137/S0363012999350298. Google Scholar

show all references

References:
[1]

S. W. Hansen, Several related models for multilayer sandwich plates,, Math. Models Methods Appl. Sci., 14 (2004), 1103. doi: 10.1142/S0218202504003568. Google Scholar

[2]

S. W. Hansen and O. Yu. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions,, to appear, (). Google Scholar

[3]

S. W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam,, Discrete Contin. Dynam. Syst., 2005 (): 365. Google Scholar

[4]

L. Hörmander, "Linear Partial Differential Equations,", Springer-Verlag, (1963). Google Scholar

[5]

O. Yu. Imanuvilov and J.-P. Puel, Global carleman estimates for weak solutions of elliptic nonhomogeneous dirichlet problems,, Int. Math. Res. Not., 2003 (): 883. doi: 10.1155/S107379280321117X. Google Scholar

[6]

O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations,, Asymptotic Analysis, 32 (2002), 185. Google Scholar

[7]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates and the non-stationary Lamé system and the application to an inverse problem,, ESIAM COCV, 11 (2005), 1. doi: 10.1051/cocv:2004030. Google Scholar

[8]

O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the Lame system with the stress boundary condition,, Publ. Research Inst. Math Sciences, 43 (2007), 1023. doi: 10.2977/prims/1201012379. Google Scholar

[9]

V. Komornik, A new method of exact controllability in short time and applications,, Ann. Fac. Sci. Toulouse Math. (5), 10 (1989), 415. Google Scholar

[10]

H. Kumano-go, "Pseudodifferential Operators,", MIT Press, (1981). Google Scholar

[11]

J. E. Lagnese, "Boundary Stabilization of Thin Plates,", SIAM Studies in Applied Mathematics, 10 (). Google Scholar

[12]

J. E. Lagnese and J.-L Lions, "Modelling, Analysis and Control of Thin Plates,", Recherches en Mathématiques Appliquées, 6 (1988). Google Scholar

[13]

I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only on $\Delta$|$\Sigma$ and homogeneous boundary displacement,, J. Diff. Eqns., 93 (1991), 62. doi: 10.1016/0022-0396(91)90022-2. Google Scholar

[14]

I. Lasiecka and R. Triggiani, Sharp regularity for elastic and thermoelastic Kirchoff equations with free boundary conditions,, Rocky Mountain J. Math., 30 (2000), 981. doi: 10.1216/rmjm/1021477256. Google Scholar

[15]

G. Lebeau and L. Robbiano, Contrôle exact de l'equation de la chaleur, (French) [Exact control of the heat equation],, Séminaire sur les Équations aux Dérivées Partielles, (1995). Google Scholar

[16]

J.-L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Springer-Verlag, (1971). Google Scholar

[17]

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems,, SIAM Review, 30 (1988), 1. doi: 10.1137/1030001. Google Scholar

[18]

Y. V. K. S. Rao and B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores,, J. Sound Vibr., 34 (1974), 309. doi: 10.1016/S0022-460X(74)80315-9. Google Scholar

[19]

R. Rajaram, Exact boundary controllability results for a Rao-Nakra sandwich beam,, Systems Control Lett., 56 (2007), 558. doi: 10.1016/j.sysconle.2007.03.007. Google Scholar

[20]

M. Taylor, "Pseudodifferential Operators,", Princeton Mathematical Series, 34,, Princeton University Press, (1981). Google Scholar

[21]

D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems,, J. Math. Pures Appl. (9), 75 (1996), 367. Google Scholar

[22]

X. Zhang, Exact controllability of the semilinear plate equations,, Asymptot. Anal., 27 (2001), 95. Google Scholar

[23]

X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities,, SIAM J. Control and Optimization, 39 (2000), 812. doi: 10.1137/S0363012999350298. Google Scholar

[1]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

[2]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[3]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

[4]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[5]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[6]

Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control & Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143

[7]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations & Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[8]

Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations & Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001

[9]

Alfredo Lorenzi, Vladimir G. Romanov. Recovering two Lamé kernels in a viscoelastic system. Inverse Problems & Imaging, 2011, 5 (2) : 431-464. doi: 10.3934/ipi.2011.5.431

[10]

Victor Isakov. Carleman estimates for some anisotropic elasticity systems and applications. Evolution Equations & Control Theory, 2012, 1 (1) : 141-154. doi: 10.3934/eect.2012.1.141

[11]

Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

[12]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[13]

Jingqun Wang, Lixin Tian, Weiwei Guo. Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2129-2148. doi: 10.3934/dcdss.2016088

[14]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[15]

Scott W. Hansen, Andrei A. Lyashenko. Exact controllability of a beam in an incompressible inviscid fluid. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 59-78. doi: 10.3934/dcds.1997.3.59

[16]

Tatsien Li, Zhiqiang Wang. A note on the exact controllability for nonautonomous hyperbolic systems. Communications on Pure & Applied Analysis, 2007, 6 (1) : 229-235. doi: 10.3934/cpaa.2007.6.229

[17]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[18]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[19]

Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks & Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017

[20]

José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019039

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]