December  2018, 15(6): 1495-1515. doi: 10.3934/mbe.2018069

Review of stability and stabilization for impulsive delayed systems

a. 

School of Mathematics and Statistics, Shandong Normal University, Ji'nan 250014, China

b. 

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Shandong Normal University, Ji'nan 250014, China

c. 

School of Mathematic and Quantitative Economics, Shandong University of Finance and Economics, Ji'nan 250014, China

* Corresponding author. Email address: lxd@sdnu.edu.cn (X.Li)

Received  August 03, 2018 Revised  August 19, 2018 Published  September 2018

This paper reviews some recent works on impulsive delayed systems (IDSs). The prime focus is the fundamental results and recent progress in theory and applications. After reviewing the relative literatures, this paper provides a comprehensive and intuitive overview of IDSs. Five aspects of IDSs are surveyed including basic theory, stability analysis, impulsive control, impulsive perturbation, and delayed impulses. Then the research prospect is given, which provides a reference for further study of IDSs theory.

Citation: Xueyan Yang, Xiaodi Li, Qiang Xi, Peiyong Duan. Review of stability and stabilization for impulsive delayed systems. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1495-1515. doi: 10.3934/mbe.2018069
References:
[1]

M. Adimy and F. Crauste, Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay, Discrete & Continuous Dynamical Systems-Series B, 8 (2017), 19-38. doi: 10.3934/dcdsb.2007.8.19. Google Scholar

[2]

E. AlzahraniH. Akca and X. Li, New synchronization schemes for delayed chaotic neural networks with impulses, Neural Computing and Applications, 28 (2017), 2823-2837. doi: 10.1007/s00521-016-2218-7. Google Scholar

[3]

F. AmatoG. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica, 49 (2013), 2546-2550. doi: 10.1016/j.automatica.2013.04.004. Google Scholar

[4]

G. Ballinger and X. Liu, On boundedness of solutions of impulsive systems, Nonlinear Studies, 4 (1997), 121-131. Google Scholar

[5]

G. Ballinger and X. Liu, On boundedness of solutions for impulsive systems in terms of two measures, Nonlinear World, 4 (1997), 417-434. Google Scholar

[6]

T. CaraballoM. Hammami and L. Mchiri, Practical exponential stability of impulsive stochastic functional differential equations, Systems & Control Letters, 109 (2017), 43-48. doi: 10.1016/j.sysconle.2017.09.009. Google Scholar

[7]

W. ChenX. Lu and W. Zheng, Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks, IEEE Transactions on Neural Networks and Learning Systems, 26 (2015), 734-748. doi: 10.1109/TNNLS.2014.2322499. Google Scholar

[8]

W. ChenD. Wei and X. Lu, Exponential stability of a class of nonlinear singularly perturbed systems with delayed impulses, Journal of the Franklin Institute, 350 (2013), 2678-2709. doi: 10.1016/j.jfranklin.2013.06.012. Google Scholar

[9]

W. Chen and W. Zheng, Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays, Automatica, 45 (2009), 1481-1488. doi: 10.1016/j.automatica.2009.02.005. Google Scholar

[10]

W. Chen and W. Zheng, The effect of delayed impulses on stability of impulsive time-delay systems, IFAC Proceedings Volumes, 44 (2011), 6307-6312. doi: 10.3182/20110828-6-IT-1002.02984. Google Scholar

[11]

W. Chen and W. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects, Automatica, 47 (2011), 1075-1083. doi: 10.1016/j.automatica.2011.02.031. Google Scholar

[12]

P. Cheng and F. Deng, Global exponential stability of impulsive stochastic functional differential systems, Statistics and Probability Letters, 80 (2010), 1854-1862. doi: 10.1016/j.spl.2010.08.011. Google Scholar

[13]

S. Dashkovskiy and A. Mironchenko, Input-to-State stability of nonlinear impulsive systems, SIAM J. Control Optim, 51 (2012), 1962-1987. doi: 10.1137/120881993. Google Scholar

[14]

M. DellnitzM. Hessel and A. Ziessler, On the computation of attractors for delay differential equations, Journal of Computational Dynamics, 3 (2016), 93-112. doi: 10.3934/jcd.2016005. Google Scholar

[15]

S. GaoD. Xie and L. Chen, Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission, Discrete & Continuous Dynamical Systems-B, 7 (2007), 77-86. Google Scholar

[16]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Dordrecht, The Netherlands: Kluwer, 1992. doi: 10.1007/978-94-015-7920-9. Google Scholar

[17]

J. GrizzleG. Abba and F. Plestan, Asymptotically stable walking for biped robots: Analysis via systems with impulse effects, IEEE Transaction on Automatic Control, 46 (2001), 51-64. doi: 10.1109/9.898695. Google Scholar

[18] K. GuJ. Chen and V. Kharitonov, Stability of Time-delay Systems, Springer Science & Business Media, 2003. doi: 10.1007/978-1-4612-0039-0.
[19] K. GuV. Kharitonov and J. Chen, Stability of Time-Delay Systems, Birkhauser, Boston, MA, USA, 2003. doi: 10.1007/978-1-4612-0039-0.
[20]

Y. GuoG. Xu and Y. Guo, Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary, Discrete & Continuous Dynamical Systems-B, 21 (2016), 2491-2507. doi: 10.3934/dcdsb.2016057. Google Scholar

[21] J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, NY, USA, 1993. doi: 10.1007/978-1-4612-4342-7.
[22]

W. HeF. Qian and J. Cao, Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control, Neural Networks, 85 (2017), 1-9. doi: 10.1016/j.neunet.2016.09.002. Google Scholar

[23]

J. Hespanha and A. Morse, Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control, (1999), 2655-2660. doi: 10.1109/CDC.1999.831330. Google Scholar

[24]

L. HetelJ. Daafouz and C. Iung, Equivalence between the lyapunov-Krasovskii functionals approach for discrete delay systems and that of the stability conditions for switched systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 697-705. doi: 10.1016/j.nahs.2007.11.003. Google Scholar

[25]

J. Hu, G. Sui, S. Du and X. Li, Finite-time stability of uncertain nonlinear systems with time-varying delay, Mathematical Problems in Engineering, 2017 (2017), Article ID 2538904, 9 pages. doi: 10.1155/2017/2538904. Google Scholar

[26]

A. Huseynov, Positive solutions of a nonlinear impulsive equation with periodic boundary conditions, Applied Mathematics and Computation, 217 (2010), 247-259. doi: 10.1016/j.amc.2010.05.055. Google Scholar

[27]

H. Jin and M. Zacksenhouse, Oscillatory neural networks for robotic yo-yo control, IEEE Transactions on Neural Networks and Learning Systems, 14 (2003), 317-325. Google Scholar

[28]

A. Kartsatos, Advanced Ordinary Differential Equations, Mariner Publishing Co., Inc., Tampa, Fla., 1980. Google Scholar

[29]

A. KhadraX. Liu and X. Shen, Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses, IEEE Transactions on Automatic Control, 54 (2009), 923-928. doi: 10.1109/TAC.2009.2013029. Google Scholar

[30]

A. KhadraX. Liu and X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication, Automatica, 41 (2005), 1491-1502. doi: 10.1016/j.automatica.2005.04.012. Google Scholar

[31]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, volume 191 in the series of Mathematics in Science and Engineering, Academic Press, 1993. Google Scholar

[32]

L. LeeY. LiuJ. Liang and X. Cai, Finite time stability of nonlinear impulsive systems and its applications in sampled-data systems, ISA Transactions, 57 (2015), 172-178. doi: 10.1016/j.isatra.2015.02.001. Google Scholar

[33]

R. Leine and T. Heimsch, Global uniform symptotic attractive stability of the non-autonomous bouncing ball system, Physica D: Nonlinear Phenomena, 241 (2012), 2029-2041. doi: 10.1016/j.physd.2011.04.013. Google Scholar

[34]

B. Li, Y. Chen and X. Lu, et al. A delayed HIV-1 model with virus waning term, Mathematical Biosciences and Engineering, 13 (2016), 135-157. doi: 10.3934/mbe.2016.13.135. Google Scholar

[35]

C. LiX. LiaoX. Yang and T. Huang, Impulsive stabilization and synchronization of a class of chaotic delay systems, Chaos, 15 (2005), 043103, 9pp. doi: 10.1063/1.2102107. Google Scholar

[36]

X. Li, New results on global exponential stabilization of impulsive functional differential equations with infinite delays or finite delays, Nonlinear Analysis: Real World Applications, 11 (2010), 4194-4201. doi: 10.1016/j.nonrwa.2010.05.006. Google Scholar

[37]

X. Li, Existence and global exponential stability of periodic solution for impulsive CohenGrossberg-type BAM neural networks with continuously distributed delays, Applied Mathematics and Computation, 215 (2009), 292-307. doi: 10.1016/j.amc.2009.05.005. Google Scholar

[38]

X. LiM. Bohner and C. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178. doi: 10.1016/j.automatica.2014.11.009. Google Scholar

[39]

X. Li and J. Cao, An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Transactions on Automatic Control, 62 (2017), 3618-3625. doi: 10.1109/TAC.2017.2669580. Google Scholar

[40]

X. Li and Y. Ding, Razumikhin-type theorems for time-delay systems with Persistent impulses, Systems and Control Letters, 107 (2017), 22-27. doi: 10.1016/j.sysconle.2017.06.007. Google Scholar

[41]

X. Li and X. Fu, Effect of leakage time-varying delay on stability of nonlinear differential Systems, Journal of the Franklin Institute, 350 (2013), 1335-1344. doi: 10.1016/j.jfranklin.2012.04.007. Google Scholar

[42]

X. Li and X. Fu, Lag synchronization of chaotic delayed neural networks via impulsive control, IMA Journal of Mathematical Control and Information, 29 (2012), 133-145. doi: 10.1093/imamci/dnr030. Google Scholar

[43]

X. Li and X. Fu, On the global exponential stability of impulsive functional differential equations with infinite delays or finite delays, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 442-447. doi: 10.1016/j.cnsns.2013.07.011. Google Scholar

[44]

X. LiP. Li and Q. Wang, Input/output-to-state stability of impulsive switched systems, Systems & Control Letters, 116 (2018), 1-7. doi: 10.1016/j.sysconle.2018.04.001. Google Scholar

[45]

X. Li and R. Rakkiyappan, Delay-dependent global asymptotic stability criteria for stochastic genetic regulatory networks with Markovian jumping parameters, Applied Mathematical Modelling, 36 (2012), 1718-1730. doi: 10.1016/j.apm.2011.09.017. Google Scholar

[46]

X. Li and R. Rakkiyappan, Stability results for Takagi-Sugeno fuzzy uncertain BAM neural networks with time delays in the leakage term, Neural Computing and Applications, 22 (2013), 203-219. doi: 10.1007/s00521-012-0839-z. Google Scholar

[47]

X. LiR. Rakkiyappan and N. Sakthivel, Non-fragile synchronization control for Markovian jumping complex dynamical networks with probabilistic time-varying coupling delay, Asian Journal of Control, 17 (2015), 1678-1695. doi: 10.1002/asjc.984. Google Scholar

[48]

X. LiJ. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Applied Mathematics and Computation, 329 (2018), 14-22. doi: 10.1016/j.amc.2018.01.036. Google Scholar

[49]

X. Li and S. Song, Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 868-877. Google Scholar

[50]

X. Li and S. Song, Stabilization of delay systems: delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411. doi: 10.1109/TAC.2016.2530041. Google Scholar

[51]

X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63-69. doi: 10.1016/j.automatica.2015.10.002. Google Scholar

[52]

X. Li and J. Wu, Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay, IEEE Transactions on Automatic Control, 63 (2018), 306-311. doi: 10.1109/TAC.2016.2639819. Google Scholar

[53]

X. LiX. Zhang and S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378-382. doi: 10.1016/j.automatica.2016.08.009. Google Scholar

[54]

X. LiQ. Zhu and Donal O'Regan, pth Moment exponential stability of impulsive stochastic functional differential equations and application to control problems of NNs, Journal of the Franklin Institute, 351 (2014), 4435-4456. doi: 10.1016/j.jfranklin.2014.04.008. Google Scholar

[55]

Y. LiH. LiX. Ding and G. Zhao, Leader-follower consensus of multi-agent systems with time delays over finite fields, IEEE Transactions on Cybernetics, pp (2018), 1-6. doi: 10.1109/TCYB.2018.2839892. Google Scholar

[56] X. LiaoL. Wang and P. Yu, Stability of Dynamical Systems, Elsevier Press, Oxford, 2007.
[57]

D. LinX. Li and D. Regan, Stability analysis of generalized impulsive functional differential equations, Mathematical and Computer Modelling, 55 (2012), 1682-1690. doi: 10.1016/j.mcm.2011.11.008. Google Scholar

[58]

B. LiuX. LiuK. Teo and Q. Wang, Razumikhin-type theorems on exponential stability of impulsive delay systems, IMA Journal of Applied Mathematics, 71 (2006), 47-61. doi: 10.1093/imamat/hxh091. Google Scholar

[59]

C. LiuX. Li and Donal O' Regan, Asymptotically practical stability of impulsive functional differential systems in terms of two measurements, Dynamic Systems and Applications, 22 (2013), 621-640. Google Scholar

[60]

J. LiuX. Liu and W. Xie, Input-to-state stability of impulsive and switching hybrid systems with time-delay, Automatica, 47 (2011), 899-908. doi: 10.1016/j.automatica.2011.01.061. Google Scholar

[61]

L. Liu, T. Caraballo and X. Fu, Exponential stability of an incompressible non-Newtonian fluid with delay, Discrete & Continuous Dynamical Systems-B.Google Scholar

[62]

X. Liu, Stability results for impulsive differential systems with applications to population growth models, Dynamics and Stability of Systems, 9 (1994), 163-174. doi: 10.1080/02681119408806175. Google Scholar

[63]

X. Liu and G. Ballinger, Uniform asymptotic stability of impulsive delay differential equations, Computers and Mathematics with Applications, 41 (2001), 903-915. doi: 10.1016/S0898-1221(00)00328-X. Google Scholar

[64]

X. LiuX. ShenY. Zhang and Q. Wang, Stability criteria for impulsive systems with time delay and unstable system matrices, IEEE Transactions on Circuits ond Systems-Ⅰ: Regular Papers, 54 (2007), 2288-2298. doi: 10.1109/TCSI.2007.904592. Google Scholar

[65]

X. Liu and Q. Wang, On stability in terms of two measures for impulsive systems of functional differential equations, Journal of Mathematical Analysis and Applications, 326 (2007), 252-265. doi: 10.1016/j.jmaa.2006.02.059. Google Scholar

[66]

X. Liu and Q. Wang, The method of Lyapunov functionals and exponential stability of impulsive systems with time delay, Nonlinear Analysis, 66 (2007), 1465-1484. doi: 10.1016/j.na.2006.02.004. Google Scholar

[67]

X. LiuS. Zhong and X. Ding, Robust exponential stability of impulsive switched systems with switching delays: A Razumikhin approach, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 1805-1812. doi: 10.1016/j.cnsns.2011.09.013. Google Scholar

[68]

J. LuD. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215-1221. doi: 10.1016/j.automatica.2010.04.005. Google Scholar

[69]

Z. Luo and J. Shen, Stability results for impulsive functional differential equations with infinite delays, J. Comput. Appl. Math, 131 (2001), 55-64. doi: 10.1016/S0377-0427(00)00323-X. Google Scholar

[70]

Z. Luo and J. Shen, Stability of impulsive functional differential equations via the Lyapunov functional, Appl. Math. Lett, 22 (2009), 163-169. doi: 10.1016/j.aml.2008.03.004. Google Scholar

[71]

X. Lv and X. Li, Finite time stability and controller design for nonlinear impulsive sampleddata systems with applications, ISA Transactions, 70 (2017), 30-36. doi: 10.1016/j.isatra.2017.07.025. Google Scholar

[72]

H. MiaoZ. Teng and C. Kang, Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays, Discrete & Continuous Dynamical Systems-B, 22 (2017), 2365-2387. doi: 10.3934/dcdsb.2017121. Google Scholar

[73]

P. NaghshtabriziJ. Hespanha and A. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems & Control Letters, 57 (2008), 378-385. doi: 10.1016/j.sysconle.2007.10.009. Google Scholar

[74]

S. Nersesov and W. Haddad, Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 832-845. doi: 10.1016/j.nahs.2007.12.001. Google Scholar

[75]

E. NikolopoulouL. R. JohnsonD. HarrisJ. D. NagyE. C. Stites and Y. Kuang, Tumour-immune dynamics with an immune checkpoint inhibitor, Letters in Biomathematics, 5 (2018), S137-S159. doi: 10.1080/23737867.2018.1440978. Google Scholar

[76]

T. NishikawaY. Lai and F. Hoppensteadt, Capacity of oscillatory associative-memory networks with error-free retrieval, Phys. Rev. Lett., 92 (2004), 108101. doi: 10.1103/PhysRevLett.92.108101. Google Scholar

[77]

L. Pan and J. Cao, Exponential stability of impulsive stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 382 (2011), 672-685. doi: 10.1016/j.jmaa.2011.04.084. Google Scholar

[78]

L. Pan and J. Cao, Robust stability for uncertain stochastic neural network with delay and impulses, Neurocomputing, 94 (2012), 102-110. doi: 10.1016/j.neucom.2012.04.013. Google Scholar

[79]

G. Peralta and K. Kunisch, Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction, Discrete & Continuous Dynamical Systems-A, 38 (2018), 3055-3083. doi: 10.3934/dcds.2018133. Google Scholar

[80]

R. RakkiyappanR. Sivasamy and X. Li, Synchronization of identical and nonidentical memristor-based chaotic systems via active backstepping control technique, Circuits, Systems, and Signal Processing, 34 (2015), 763-778. doi: 10.1007/s00034-014-9883-5. Google Scholar

[81]

R. RakkiyappanG. VelmuruganX. Li and D. Regan, Global dissipativity of memristor-based complex-valued neural networks with time-varying delays, Neural Computing and Applications, 27 (2016), 629-649. doi: 10.1007/s00521-015-1883-2. Google Scholar

[82]

A. RuizD. Owens and S. Townley, Existence, learning, and replication of periodic motion in recurrent neural networks, IEEE Transactions on Neural Networks and Learning Systems, 9 (1998), 651-661. doi: 10.1109/72.701178. Google Scholar

[83]

E. Rutter and Y. Kuang, Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer, DCDS-B, 22 (2017), 1001-1021. doi: 10.3934/dcdsb.2017050. Google Scholar

[84]

J. ShenJ. Li and Q. Wang, Boundedness and periodicity in impulsive ordinary and functional differential equations, Nonlinear Analysis, 65 (2006), 1986-2002. doi: 10.1016/j.na.2005.11.006. Google Scholar

[85]

J. ShenZ. Luo and X. Liu, Impulsive stabilization of functional differential equations via liapunov functionals, Journal of Mathematical Analysis and Applications, 240 (1999), 1-15. doi: 10.1006/jmaa.1999.6551. Google Scholar

[86]

W. Shen and Z. Shen, Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media, Communications on Pure & Applied Analysis, 15 (2016), 1193-1213. doi: 10.3934/cpaa.2016.15.1193. Google Scholar

[87]

X. Song and J. H. Park, Linear optimal estimation for discrete-time measurement-delay systems with multi-channel multiplicative noise, IEEE Transactions on Circuis and Systems Ⅱ-Express Brief, 64 (2017), 156-160. Google Scholar

[88]

X. SongJ. H. Park and X. Yan, Linear estimation for measurement-delay systems with periodic coefficients and multiplicative noise, IEEE Transactions on Automatic Control, 62 (2017), 4124-4130. doi: 10.1109/TAC.2016.2621889. Google Scholar

[89]

I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, Walter de Gruyter, Berlin, 2009. doi: 10.1515/9783110221824. Google Scholar

[90]

I. Stamova, Vector Lyapunov functions for practical stability of nonlinear impulsive functional differential equations, Journal of Mathematical Analysis and Applications, 325 (2007), 612-623. doi: 10.1016/j.jmaa.2006.02.019. Google Scholar

[91]

I. StamovaT. Stamov and X. Li, Global exponential stability of a class of impulsive cellular neural networks with supremums, Internat. J. Adapt. Control Signal Process, 28 (2014), 1227-1239. doi: 10.1002/acs.2440. Google Scholar

[92]

I. StamovaT. Stamov and N. Simeonova, Impulsive effects on the global exponential stability of neural network models with supremums, European Journal of Control, 20 (2014), 199-206. doi: 10.1016/j.ejcon.2014.05.001. Google Scholar

[93]

X. TanJ. Cao and X. Li, Consensus of Leader-Following Multiagent Systems: A Distributed Event-Triggered Impulsive Control Strategy, IEEE Transactions on Cybernetics, 99 (2018), 1-10. doi: 10.1109/TCYB.2017.2786474. Google Scholar

[94]

X. TanJ. Cao and X. Li, Leader-following mean square consensus of stochastic multi-agent systems with input delay via event-triggered control, IET Control Theory & Applications, 12 (2018), 299-309. doi: 10.1049/iet-cta.2017.0462. Google Scholar

[95]

J. Tseng, Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays, Discrete & Continuous Dynamical Systems-A, 33 (2013), 4693-4729. doi: 10.3934/dcds.2013.33.4693. Google Scholar

[96]

B. VadivooR. RamachandranJ. CaoH. Zhang and X. Li, Controllability analysis of nonlinear neutral-type fractional-order differential systems with state delay and impulsive effects, International Journal of Control, Automation and Systems, 16 (2018), 659-669. doi: 10.1007/s12555-017-0281-1. Google Scholar

[97]

D. Wang, Emergent synchrony in locally coupled neural oscillators, IEEE Transactions on Neural Networks and Learning Systems, 6 (1995), 941-948. Google Scholar

[98]

H. WangS. DuanT. Huang and J. Tan, Synchronization of memristive delayed neural networks via hybrid impulsive control, Neurocomputing, 267 (2017), 615-623. doi: 10.1016/j.neucom.2017.06.028. Google Scholar

[99]

H. WangS. DuanC. LiL. Wang and T. Huang, Stability of impulsive delayed linear differential systems with delayed impulses, Journal of the Franklin Institute, 352 (2015), 3044-3068. doi: 10.1016/j.jfranklin.2014.12.009. Google Scholar

[100]

H. WangJ. Li and Y. Kuang, Enhanced modeling of the glucose-insulin system and its applications in insulin therapies, J. Biological Dynamics, 3 (2009), 22-38. doi: 10.1080/17513750802101927. Google Scholar

[101]

L. WangM. Yu and P. Niu, Periodic solution and almost periodic solution of impulsive Lasota-Wazewska model with multiple time-varying delays, Computers and Mathematics with Applications, 64 (2012), 2383-2394. doi: 10.1016/j.camwa.2012.05.008. Google Scholar

[102]

Q. Wang and X. Liu, Exponential stability for impulsive delay differential equations by Razumikhin method, Journal of Mathematical Analysis and Applications, 309 (2005), 462-473. doi: 10.1016/j.jmaa.2004.09.016. Google Scholar

[103]

Q. Wang and X. Liu, Impulsive stabilization of delay differential systems via the LyapunovRazumikhin method, Applied Mathematics Letters, 20 (2007), 839-845. doi: 10.1016/j.aml.2006.08.016. Google Scholar

[104]

Q. Wang and X. Liu, Stability criteria of a class of nonlinear impulsive switching systems with time-varying delays, Journal of the Franklin Institute, 349 (2012), 1030-1047. doi: 10.1016/j.jfranklin.2011.12.005. Google Scholar

[105]

Q. Wang and X. Liu, The method of Lyapunov functionals and exponential stability of impulsive systems with time delay, Nonlinear Analysis, 66 (2007), 1465-1484. doi: 10.1016/j.na.2006.02.004. Google Scholar

[106]

Y. WangX. ShiZ. ZuoM. Chen and Y. Shao, On finite-time stability for nonlinear impulsive switched systems, Nonlinear Analysis: Real World Applications, 14 (2013), 807-814. doi: 10.1016/j.nonrwa.2012.08.003. Google Scholar

[107]

N. WouwP. NaghshtabriziM. Cloosterman and J. Hespanha, Tracking control for sampleddata systems with uncertain timevarying sampling intervals and delays, International Journal of Robust and Nonlinear Control, 20 (2010), 387-411. doi: 10.1002/rnc.1433. Google Scholar

[108]

Q. WuJ. Zhou and L. Xiang, Global exponential stability of impulsive differential equations with any time delays, Applied Mathematics Letters, 23 (2010), 143-147. doi: 10.1016/j.aml.2009.09.001. Google Scholar

[109]

T. Yang, Impulsive Control Theory, Berlin, Germany: Springer, 2001. Google Scholar

[110]

X. YangJ. Cao and J. Lu, Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control, IEEE Transactions On Circuits And Systems-Ⅰ: Regular Papers, 59 (2012), 371-384. doi: 10.1109/TCSI.2011.2163969. Google Scholar

[111]

X. YangX. Li and J. Cao, Robust finite-time stability of singular nonlinear systems with interval time-varying delay, Journal of Franklin Institute, 355 (2018), 1241-1258. doi: 10.1016/j.jfranklin.2017.12.018. Google Scholar

[112]

X. Yang and J. Lu, Finite-time synchronization of coupled networks with Markovian topology and impulsive effects, IEEE Transaction on Automatic Control, 61 (2016), 2256-2261. doi: 10.1109/TAC.2015.2484328. Google Scholar

[113]

X. ZengC. LiT. Huang and X. He, Stability analysis of complex-valued impulsive systems with time delay, Applied Mathematics and Computation, 256 (2015), 75-82. doi: 10.1016/j.amc.2015.01.006. Google Scholar

[114]

W. ZhangY. TangJ. Fang and X. Wu, Stability of delayed neural networks with timevarying impulses, Neural Networks, 36 (2012), 59-63. doi: 10.1016/j.neunet.2012.08.014. Google Scholar

[115]

W. ZhangY. TangQ. Miao and W. Du, Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 1316-1326. Google Scholar

[116]

X. Zhang and X. Li, Input-to-state stability of non-linear systems with distributed delayed impulses, IET Control Theory & Applications, 11 (2017), 81-89. doi: 10.1049/iet-cta.2016.0469. Google Scholar

[117]

X. ZhangX. LiJ. Cao and F. Miaadi, Design of delay-dependent controllers for finite-time stabilization of delayed neural networks with uncertainty, Journal of Franklin Institute, 355 (2018), 5394-5413. doi: 10.1016/j.jfranklin.2018.05.037. Google Scholar

[118]

X. ZhangX. Lv and X. Li, Sampled-data based lag synchronization of chaotic delayed neural networks with impulsive control, Nonlinear Dynamics, 90 (2017), 2199-2207. doi: 10.1007/s11071-017-3795-4. Google Scholar

[119]

Y. Zhang and J. Sun, Stability of impulsive functional differential equations, Nonlinear Analysis: Theory, Methods and Applications, 68 (2008), 3665-3678. doi: 10.1016/j.na.2007.04.009. Google Scholar

[120]

Y. Zhang and J. Sun, Stability of impulsive infinite delay differential equations, Applied Mathematics Letters, 19 (2006), 1100-1106. doi: 10.1016/j.aml.2005.09.016. Google Scholar

[121]

Y. ZhengH. LiX. Ding and Y. Liu, Stabilization and set stabilization of delayed Boolean control networks based on trajectory stabilization, Journal of the Franklin Institute, 354 (2017), 7812-7827. doi: 10.1016/j.jfranklin.2017.09.024. Google Scholar

[122]

Q. Zhu and X. Li, Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks, Fuzzy Sets and Systems, 203 (2012), 74-94. doi: 10.1016/j.fss.2012.01.005. Google Scholar

[123]

Q. ZhuF. Xi and X. Li, Robust exponential stability of stochastically nonlinear jump systems with mixed time delays, Journal of Optimization Theory and Applications, 154 (2012), 154-174. doi: 10.1007/s10957-012-9997-5. Google Scholar

[124]

M. ZouA. Liu and Z. Zhang, Oscillation theorems for impulsive parabolic differential system of neutral type, Discrete & Continuous Dynamical Systems-B, 22 (2017), 2351-2363. doi: 10.3934/dcdsb.2017103. Google Scholar

show all references

References:
[1]

M. Adimy and F. Crauste, Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay, Discrete & Continuous Dynamical Systems-Series B, 8 (2017), 19-38. doi: 10.3934/dcdsb.2007.8.19. Google Scholar

[2]

E. AlzahraniH. Akca and X. Li, New synchronization schemes for delayed chaotic neural networks with impulses, Neural Computing and Applications, 28 (2017), 2823-2837. doi: 10.1007/s00521-016-2218-7. Google Scholar

[3]

F. AmatoG. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems, Automatica, 49 (2013), 2546-2550. doi: 10.1016/j.automatica.2013.04.004. Google Scholar

[4]

G. Ballinger and X. Liu, On boundedness of solutions of impulsive systems, Nonlinear Studies, 4 (1997), 121-131. Google Scholar

[5]

G. Ballinger and X. Liu, On boundedness of solutions for impulsive systems in terms of two measures, Nonlinear World, 4 (1997), 417-434. Google Scholar

[6]

T. CaraballoM. Hammami and L. Mchiri, Practical exponential stability of impulsive stochastic functional differential equations, Systems & Control Letters, 109 (2017), 43-48. doi: 10.1016/j.sysconle.2017.09.009. Google Scholar

[7]

W. ChenX. Lu and W. Zheng, Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks, IEEE Transactions on Neural Networks and Learning Systems, 26 (2015), 734-748. doi: 10.1109/TNNLS.2014.2322499. Google Scholar

[8]

W. ChenD. Wei and X. Lu, Exponential stability of a class of nonlinear singularly perturbed systems with delayed impulses, Journal of the Franklin Institute, 350 (2013), 2678-2709. doi: 10.1016/j.jfranklin.2013.06.012. Google Scholar

[9]

W. Chen and W. Zheng, Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays, Automatica, 45 (2009), 1481-1488. doi: 10.1016/j.automatica.2009.02.005. Google Scholar

[10]

W. Chen and W. Zheng, The effect of delayed impulses on stability of impulsive time-delay systems, IFAC Proceedings Volumes, 44 (2011), 6307-6312. doi: 10.3182/20110828-6-IT-1002.02984. Google Scholar

[11]

W. Chen and W. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects, Automatica, 47 (2011), 1075-1083. doi: 10.1016/j.automatica.2011.02.031. Google Scholar

[12]

P. Cheng and F. Deng, Global exponential stability of impulsive stochastic functional differential systems, Statistics and Probability Letters, 80 (2010), 1854-1862. doi: 10.1016/j.spl.2010.08.011. Google Scholar

[13]

S. Dashkovskiy and A. Mironchenko, Input-to-State stability of nonlinear impulsive systems, SIAM J. Control Optim, 51 (2012), 1962-1987. doi: 10.1137/120881993. Google Scholar

[14]

M. DellnitzM. Hessel and A. Ziessler, On the computation of attractors for delay differential equations, Journal of Computational Dynamics, 3 (2016), 93-112. doi: 10.3934/jcd.2016005. Google Scholar

[15]

S. GaoD. Xie and L. Chen, Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission, Discrete & Continuous Dynamical Systems-B, 7 (2007), 77-86. Google Scholar

[16]

K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Dordrecht, The Netherlands: Kluwer, 1992. doi: 10.1007/978-94-015-7920-9. Google Scholar

[17]

J. GrizzleG. Abba and F. Plestan, Asymptotically stable walking for biped robots: Analysis via systems with impulse effects, IEEE Transaction on Automatic Control, 46 (2001), 51-64. doi: 10.1109/9.898695. Google Scholar

[18] K. GuJ. Chen and V. Kharitonov, Stability of Time-delay Systems, Springer Science & Business Media, 2003. doi: 10.1007/978-1-4612-0039-0.
[19] K. GuV. Kharitonov and J. Chen, Stability of Time-Delay Systems, Birkhauser, Boston, MA, USA, 2003. doi: 10.1007/978-1-4612-0039-0.
[20]

Y. GuoG. Xu and Y. Guo, Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary, Discrete & Continuous Dynamical Systems-B, 21 (2016), 2491-2507. doi: 10.3934/dcdsb.2016057. Google Scholar

[21] J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, NY, USA, 1993. doi: 10.1007/978-1-4612-4342-7.
[22]

W. HeF. Qian and J. Cao, Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control, Neural Networks, 85 (2017), 1-9. doi: 10.1016/j.neunet.2016.09.002. Google Scholar

[23]

J. Hespanha and A. Morse, Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control, (1999), 2655-2660. doi: 10.1109/CDC.1999.831330. Google Scholar

[24]

L. HetelJ. Daafouz and C. Iung, Equivalence between the lyapunov-Krasovskii functionals approach for discrete delay systems and that of the stability conditions for switched systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 697-705. doi: 10.1016/j.nahs.2007.11.003. Google Scholar

[25]

J. Hu, G. Sui, S. Du and X. Li, Finite-time stability of uncertain nonlinear systems with time-varying delay, Mathematical Problems in Engineering, 2017 (2017), Article ID 2538904, 9 pages. doi: 10.1155/2017/2538904. Google Scholar

[26]

A. Huseynov, Positive solutions of a nonlinear impulsive equation with periodic boundary conditions, Applied Mathematics and Computation, 217 (2010), 247-259. doi: 10.1016/j.amc.2010.05.055. Google Scholar

[27]

H. Jin and M. Zacksenhouse, Oscillatory neural networks for robotic yo-yo control, IEEE Transactions on Neural Networks and Learning Systems, 14 (2003), 317-325. Google Scholar

[28]

A. Kartsatos, Advanced Ordinary Differential Equations, Mariner Publishing Co., Inc., Tampa, Fla., 1980. Google Scholar

[29]

A. KhadraX. Liu and X. Shen, Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses, IEEE Transactions on Automatic Control, 54 (2009), 923-928. doi: 10.1109/TAC.2009.2013029. Google Scholar

[30]

A. KhadraX. Liu and X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication, Automatica, 41 (2005), 1491-1502. doi: 10.1016/j.automatica.2005.04.012. Google Scholar

[31]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, volume 191 in the series of Mathematics in Science and Engineering, Academic Press, 1993. Google Scholar

[32]

L. LeeY. LiuJ. Liang and X. Cai, Finite time stability of nonlinear impulsive systems and its applications in sampled-data systems, ISA Transactions, 57 (2015), 172-178. doi: 10.1016/j.isatra.2015.02.001. Google Scholar

[33]

R. Leine and T. Heimsch, Global uniform symptotic attractive stability of the non-autonomous bouncing ball system, Physica D: Nonlinear Phenomena, 241 (2012), 2029-2041. doi: 10.1016/j.physd.2011.04.013. Google Scholar

[34]

B. Li, Y. Chen and X. Lu, et al. A delayed HIV-1 model with virus waning term, Mathematical Biosciences and Engineering, 13 (2016), 135-157. doi: 10.3934/mbe.2016.13.135. Google Scholar

[35]

C. LiX. LiaoX. Yang and T. Huang, Impulsive stabilization and synchronization of a class of chaotic delay systems, Chaos, 15 (2005), 043103, 9pp. doi: 10.1063/1.2102107. Google Scholar

[36]

X. Li, New results on global exponential stabilization of impulsive functional differential equations with infinite delays or finite delays, Nonlinear Analysis: Real World Applications, 11 (2010), 4194-4201. doi: 10.1016/j.nonrwa.2010.05.006. Google Scholar

[37]

X. Li, Existence and global exponential stability of periodic solution for impulsive CohenGrossberg-type BAM neural networks with continuously distributed delays, Applied Mathematics and Computation, 215 (2009), 292-307. doi: 10.1016/j.amc.2009.05.005. Google Scholar

[38]

X. LiM. Bohner and C. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178. doi: 10.1016/j.automatica.2014.11.009. Google Scholar

[39]

X. Li and J. Cao, An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Transactions on Automatic Control, 62 (2017), 3618-3625. doi: 10.1109/TAC.2017.2669580. Google Scholar

[40]

X. Li and Y. Ding, Razumikhin-type theorems for time-delay systems with Persistent impulses, Systems and Control Letters, 107 (2017), 22-27. doi: 10.1016/j.sysconle.2017.06.007. Google Scholar

[41]

X. Li and X. Fu, Effect of leakage time-varying delay on stability of nonlinear differential Systems, Journal of the Franklin Institute, 350 (2013), 1335-1344. doi: 10.1016/j.jfranklin.2012.04.007. Google Scholar

[42]

X. Li and X. Fu, Lag synchronization of chaotic delayed neural networks via impulsive control, IMA Journal of Mathematical Control and Information, 29 (2012), 133-145. doi: 10.1093/imamci/dnr030. Google Scholar

[43]

X. Li and X. Fu, On the global exponential stability of impulsive functional differential equations with infinite delays or finite delays, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 442-447. doi: 10.1016/j.cnsns.2013.07.011. Google Scholar

[44]

X. LiP. Li and Q. Wang, Input/output-to-state stability of impulsive switched systems, Systems & Control Letters, 116 (2018), 1-7. doi: 10.1016/j.sysconle.2018.04.001. Google Scholar

[45]

X. Li and R. Rakkiyappan, Delay-dependent global asymptotic stability criteria for stochastic genetic regulatory networks with Markovian jumping parameters, Applied Mathematical Modelling, 36 (2012), 1718-1730. doi: 10.1016/j.apm.2011.09.017. Google Scholar

[46]

X. Li and R. Rakkiyappan, Stability results for Takagi-Sugeno fuzzy uncertain BAM neural networks with time delays in the leakage term, Neural Computing and Applications, 22 (2013), 203-219. doi: 10.1007/s00521-012-0839-z. Google Scholar

[47]

X. LiR. Rakkiyappan and N. Sakthivel, Non-fragile synchronization control for Markovian jumping complex dynamical networks with probabilistic time-varying coupling delay, Asian Journal of Control, 17 (2015), 1678-1695. doi: 10.1002/asjc.984. Google Scholar

[48]

X. LiJ. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Applied Mathematics and Computation, 329 (2018), 14-22. doi: 10.1016/j.amc.2018.01.036. Google Scholar

[49]

X. Li and S. Song, Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 868-877. Google Scholar

[50]

X. Li and S. Song, Stabilization of delay systems: delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411. doi: 10.1109/TAC.2016.2530041. Google Scholar

[51]

X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63-69. doi: 10.1016/j.automatica.2015.10.002. Google Scholar

[52]

X. Li and J. Wu, Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay, IEEE Transactions on Automatic Control, 63 (2018), 306-311. doi: 10.1109/TAC.2016.2639819. Google Scholar

[53]

X. LiX. Zhang and S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378-382. doi: 10.1016/j.automatica.2016.08.009. Google Scholar

[54]

X. LiQ. Zhu and Donal O'Regan, pth Moment exponential stability of impulsive stochastic functional differential equations and application to control problems of NNs, Journal of the Franklin Institute, 351 (2014), 4435-4456. doi: 10.1016/j.jfranklin.2014.04.008. Google Scholar

[55]

Y. LiH. LiX. Ding and G. Zhao, Leader-follower consensus of multi-agent systems with time delays over finite fields, IEEE Transactions on Cybernetics, pp (2018), 1-6. doi: 10.1109/TCYB.2018.2839892. Google Scholar

[56] X. LiaoL. Wang and P. Yu, Stability of Dynamical Systems, Elsevier Press, Oxford, 2007.
[57]

D. LinX. Li and D. Regan, Stability analysis of generalized impulsive functional differential equations, Mathematical and Computer Modelling, 55 (2012), 1682-1690. doi: 10.1016/j.mcm.2011.11.008. Google Scholar

[58]

B. LiuX. LiuK. Teo and Q. Wang, Razumikhin-type theorems on exponential stability of impulsive delay systems, IMA Journal of Applied Mathematics, 71 (2006), 47-61. doi: 10.1093/imamat/hxh091. Google Scholar

[59]

C. LiuX. Li and Donal O' Regan, Asymptotically practical stability of impulsive functional differential systems in terms of two measurements, Dynamic Systems and Applications, 22 (2013), 621-640. Google Scholar

[60]

J. LiuX. Liu and W. Xie, Input-to-state stability of impulsive and switching hybrid systems with time-delay, Automatica, 47 (2011), 899-908. doi: 10.1016/j.automatica.2011.01.061. Google Scholar

[61]

L. Liu, T. Caraballo and X. Fu, Exponential stability of an incompressible non-Newtonian fluid with delay, Discrete & Continuous Dynamical Systems-B.Google Scholar

[62]

X. Liu, Stability results for impulsive differential systems with applications to population growth models, Dynamics and Stability of Systems, 9 (1994), 163-174. doi: 10.1080/02681119408806175. Google Scholar

[63]

X. Liu and G. Ballinger, Uniform asymptotic stability of impulsive delay differential equations, Computers and Mathematics with Applications, 41 (2001), 903-915. doi: 10.1016/S0898-1221(00)00328-X. Google Scholar

[64]

X. LiuX. ShenY. Zhang and Q. Wang, Stability criteria for impulsive systems with time delay and unstable system matrices, IEEE Transactions on Circuits ond Systems-Ⅰ: Regular Papers, 54 (2007), 2288-2298. doi: 10.1109/TCSI.2007.904592. Google Scholar

[65]

X. Liu and Q. Wang, On stability in terms of two measures for impulsive systems of functional differential equations, Journal of Mathematical Analysis and Applications, 326 (2007), 252-265. doi: 10.1016/j.jmaa.2006.02.059. Google Scholar

[66]

X. Liu and Q. Wang, The method of Lyapunov functionals and exponential stability of impulsive systems with time delay, Nonlinear Analysis, 66 (2007), 1465-1484. doi: 10.1016/j.na.2006.02.004. Google Scholar

[67]

X. LiuS. Zhong and X. Ding, Robust exponential stability of impulsive switched systems with switching delays: A Razumikhin approach, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 1805-1812. doi: 10.1016/j.cnsns.2011.09.013. Google Scholar

[68]

J. LuD. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215-1221. doi: 10.1016/j.automatica.2010.04.005. Google Scholar

[69]

Z. Luo and J. Shen, Stability results for impulsive functional differential equations with infinite delays, J. Comput. Appl. Math, 131 (2001), 55-64. doi: 10.1016/S0377-0427(00)00323-X. Google Scholar

[70]

Z. Luo and J. Shen, Stability of impulsive functional differential equations via the Lyapunov functional, Appl. Math. Lett, 22 (2009), 163-169. doi: 10.1016/j.aml.2008.03.004. Google Scholar

[71]

X. Lv and X. Li, Finite time stability and controller design for nonlinear impulsive sampleddata systems with applications, ISA Transactions, 70 (2017), 30-36. doi: 10.1016/j.isatra.2017.07.025. Google Scholar

[72]

H. MiaoZ. Teng and C. Kang, Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays, Discrete & Continuous Dynamical Systems-B, 22 (2017), 2365-2387. doi: 10.3934/dcdsb.2017121. Google Scholar

[73]

P. NaghshtabriziJ. Hespanha and A. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems & Control Letters, 57 (2008), 378-385. doi: 10.1016/j.sysconle.2007.10.009. Google Scholar

[74]

S. Nersesov and W. Haddad, Finite-time stabilization of nonlinear impulsive dynamical systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 832-845. doi: 10.1016/j.nahs.2007.12.001. Google Scholar

[75]

E. NikolopoulouL. R. JohnsonD. HarrisJ. D. NagyE. C. Stites and Y. Kuang, Tumour-immune dynamics with an immune checkpoint inhibitor, Letters in Biomathematics, 5 (2018), S137-S159. doi: 10.1080/23737867.2018.1440978. Google Scholar

[76]

T. NishikawaY. Lai and F. Hoppensteadt, Capacity of oscillatory associative-memory networks with error-free retrieval, Phys. Rev. Lett., 92 (2004), 108101. doi: 10.1103/PhysRevLett.92.108101. Google Scholar

[77]

L. Pan and J. Cao, Exponential stability of impulsive stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 382 (2011), 672-685. doi: 10.1016/j.jmaa.2011.04.084. Google Scholar

[78]

L. Pan and J. Cao, Robust stability for uncertain stochastic neural network with delay and impulses, Neurocomputing, 94 (2012), 102-110. doi: 10.1016/j.neucom.2012.04.013. Google Scholar

[79]

G. Peralta and K. Kunisch, Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction, Discrete & Continuous Dynamical Systems-A, 38 (2018), 3055-3083. doi: 10.3934/dcds.2018133. Google Scholar

[80]

R. RakkiyappanR. Sivasamy and X. Li, Synchronization of identical and nonidentical memristor-based chaotic systems via active backstepping control technique, Circuits, Systems, and Signal Processing, 34 (2015), 763-778. doi: 10.1007/s00034-014-9883-5. Google Scholar

[81]

R. RakkiyappanG. VelmuruganX. Li and D. Regan, Global dissipativity of memristor-based complex-valued neural networks with time-varying delays, Neural Computing and Applications, 27 (2016), 629-649. doi: 10.1007/s00521-015-1883-2. Google Scholar

[82]

A. RuizD. Owens and S. Townley, Existence, learning, and replication of periodic motion in recurrent neural networks, IEEE Transactions on Neural Networks and Learning Systems, 9 (1998), 651-661. doi: 10.1109/72.701178. Google Scholar

[83]

E. Rutter and Y. Kuang, Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer, DCDS-B, 22 (2017), 1001-1021. doi: 10.3934/dcdsb.2017050. Google Scholar

[84]

J. ShenJ. Li and Q. Wang, Boundedness and periodicity in impulsive ordinary and functional differential equations, Nonlinear Analysis, 65 (2006), 1986-2002. doi: 10.1016/j.na.2005.11.006. Google Scholar

[85]

J. ShenZ. Luo and X. Liu, Impulsive stabilization of functional differential equations via liapunov functionals, Journal of Mathematical Analysis and Applications, 240 (1999), 1-15. doi: 10.1006/jmaa.1999.6551. Google Scholar

[86]

W. Shen and Z. Shen, Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media, Communications on Pure & Applied Analysis, 15 (2016), 1193-1213. doi: 10.3934/cpaa.2016.15.1193. Google Scholar

[87]

X. Song and J. H. Park, Linear optimal estimation for discrete-time measurement-delay systems with multi-channel multiplicative noise, IEEE Transactions on Circuis and Systems Ⅱ-Express Brief, 64 (2017), 156-160. Google Scholar

[88]

X. SongJ. H. Park and X. Yan, Linear estimation for measurement-delay systems with periodic coefficients and multiplicative noise, IEEE Transactions on Automatic Control, 62 (2017), 4124-4130. doi: 10.1109/TAC.2016.2621889. Google Scholar

[89]

I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, Walter de Gruyter, Berlin, 2009. doi: 10.1515/9783110221824. Google Scholar

[90]

I. Stamova, Vector Lyapunov functions for practical stability of nonlinear impulsive functional differential equations, Journal of Mathematical Analysis and Applications, 325 (2007), 612-623. doi: 10.1016/j.jmaa.2006.02.019. Google Scholar

[91]

I. StamovaT. Stamov and X. Li, Global exponential stability of a class of impulsive cellular neural networks with supremums, Internat. J. Adapt. Control Signal Process, 28 (2014), 1227-1239. doi: 10.1002/acs.2440. Google Scholar

[92]

I. StamovaT. Stamov and N. Simeonova, Impulsive effects on the global exponential stability of neural network models with supremums, European Journal of Control, 20 (2014), 199-206. doi: 10.1016/j.ejcon.2014.05.001. Google Scholar

[93]

X. TanJ. Cao and X. Li, Consensus of Leader-Following Multiagent Systems: A Distributed Event-Triggered Impulsive Control Strategy, IEEE Transactions on Cybernetics, 99 (2018), 1-10. doi: 10.1109/TCYB.2017.2786474. Google Scholar

[94]

X. TanJ. Cao and X. Li, Leader-following mean square consensus of stochastic multi-agent systems with input delay via event-triggered control, IET Control Theory & Applications, 12 (2018), 299-309. doi: 10.1049/iet-cta.2017.0462. Google Scholar

[95]

J. Tseng, Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays, Discrete & Continuous Dynamical Systems-A, 33 (2013), 4693-4729. doi: 10.3934/dcds.2013.33.4693. Google Scholar

[96]

B. VadivooR. RamachandranJ. CaoH. Zhang and X. Li, Controllability analysis of nonlinear neutral-type fractional-order differential systems with state delay and impulsive effects, International Journal of Control, Automation and Systems, 16 (2018), 659-669. doi: 10.1007/s12555-017-0281-1. Google Scholar

[97]

D. Wang, Emergent synchrony in locally coupled neural oscillators, IEEE Transactions on Neural Networks and Learning Systems, 6 (1995), 941-948. Google Scholar

[98]

H. WangS. DuanT. Huang and J. Tan, Synchronization of memristive delayed neural networks via hybrid impulsive control, Neurocomputing, 267 (2017), 615-623. doi: 10.1016/j.neucom.2017.06.028. Google Scholar

[99]

H. WangS. DuanC. LiL. Wang and T. Huang, Stability of impulsive delayed linear differential systems with delayed impulses, Journal of the Franklin Institute, 352 (2015), 3044-3068. doi: 10.1016/j.jfranklin.2014.12.009. Google Scholar

[100]

H. WangJ. Li and Y. Kuang, Enhanced modeling of the glucose-insulin system and its applications in insulin therapies, J. Biological Dynamics, 3 (2009), 22-38. doi: 10.1080/17513750802101927. Google Scholar

[101]

L. WangM. Yu and P. Niu, Periodic solution and almost periodic solution of impulsive Lasota-Wazewska model with multiple time-varying delays, Computers and Mathematics with Applications, 64 (2012), 2383-2394. doi: 10.1016/j.camwa.2012.05.008. Google Scholar

[102]

Q. Wang and X. Liu, Exponential stability for impulsive delay differential equations by Razumikhin method, Journal of Mathematical Analysis and Applications, 309 (2005), 462-473. doi: 10.1016/j.jmaa.2004.09.016. Google Scholar

[103]

Q. Wang and X. Liu, Impulsive stabilization of delay differential systems via the LyapunovRazumikhin method, Applied Mathematics Letters, 20 (2007), 839-845. doi: 10.1016/j.aml.2006.08.016. Google Scholar

[104]

Q. Wang and X. Liu, Stability criteria of a class of nonlinear impulsive switching systems with time-varying delays, Journal of the Franklin Institute, 349 (2012), 1030-1047. doi: 10.1016/j.jfranklin.2011.12.005. Google Scholar

[105]

Q. Wang and X. Liu, The method of Lyapunov functionals and exponential stability of impulsive systems with time delay, Nonlinear Analysis, 66 (2007), 1465-1484. doi: 10.1016/j.na.2006.02.004. Google Scholar

[106]

Y. WangX. ShiZ. ZuoM. Chen and Y. Shao, On finite-time stability for nonlinear impulsive switched systems, Nonlinear Analysis: Real World Applications, 14 (2013), 807-814. doi: 10.1016/j.nonrwa.2012.08.003. Google Scholar

[107]

N. WouwP. NaghshtabriziM. Cloosterman and J. Hespanha, Tracking control for sampleddata systems with uncertain timevarying sampling intervals and delays, International Journal of Robust and Nonlinear Control, 20 (2010), 387-411. doi: 10.1002/rnc.1433. Google Scholar

[108]

Q. WuJ. Zhou and L. Xiang, Global exponential stability of impulsive differential equations with any time delays, Applied Mathematics Letters, 23 (2010), 143-147. doi: 10.1016/j.aml.2009.09.001. Google Scholar

[109]

T. Yang, Impulsive Control Theory, Berlin, Germany: Springer, 2001. Google Scholar

[110]

X. YangJ. Cao and J. Lu, Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control, IEEE Transactions On Circuits And Systems-Ⅰ: Regular Papers, 59 (2012), 371-384. doi: 10.1109/TCSI.2011.2163969. Google Scholar

[111]

X. YangX. Li and J. Cao, Robust finite-time stability of singular nonlinear systems with interval time-varying delay, Journal of Franklin Institute, 355 (2018), 1241-1258. doi: 10.1016/j.jfranklin.2017.12.018. Google Scholar

[112]

X. Yang and J. Lu, Finite-time synchronization of coupled networks with Markovian topology and impulsive effects, IEEE Transaction on Automatic Control, 61 (2016), 2256-2261. doi: 10.1109/TAC.2015.2484328. Google Scholar

[113]

X. ZengC. LiT. Huang and X. He, Stability analysis of complex-valued impulsive systems with time delay, Applied Mathematics and Computation, 256 (2015), 75-82. doi: 10.1016/j.amc.2015.01.006. Google Scholar

[114]

W. ZhangY. TangJ. Fang and X. Wu, Stability of delayed neural networks with timevarying impulses, Neural Networks, 36 (2012), 59-63. doi: 10.1016/j.neunet.2012.08.014. Google Scholar

[115]

W. ZhangY. TangQ. Miao and W. Du, Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 1316-1326. Google Scholar

[116]

X. Zhang and X. Li, Input-to-state stability of non-linear systems with distributed delayed impulses, IET Control Theory & Applications, 11 (2017), 81-89. doi: 10.1049/iet-cta.2016.0469. Google Scholar

[117]

X. ZhangX. LiJ. Cao and F. Miaadi, Design of delay-dependent controllers for finite-time stabilization of delayed neural networks with uncertainty, Journal of Franklin Institute, 355 (2018), 5394-5413. doi: 10.1016/j.jfranklin.2018.05.037. Google Scholar

[118]

X. ZhangX. Lv and X. Li, Sampled-data based lag synchronization of chaotic delayed neural networks with impulsive control, Nonlinear Dynamics, 90 (2017), 2199-2207. doi: 10.1007/s11071-017-3795-4. Google Scholar

[119]

Y. Zhang and J. Sun, Stability of impulsive functional differential equations, Nonlinear Analysis: Theory, Methods and Applications, 68 (2008), 3665-3678. doi: 10.1016/j.na.2007.04.009. Google Scholar

[120]

Y. Zhang and J. Sun, Stability of impulsive infinite delay differential equations, Applied Mathematics Letters, 19 (2006), 1100-1106. doi: 10.1016/j.aml.2005.09.016. Google Scholar

[121]

Y. ZhengH. LiX. Ding and Y. Liu, Stabilization and set stabilization of delayed Boolean control networks based on trajectory stabilization, Journal of the Franklin Institute, 354 (2017), 7812-7827. doi: 10.1016/j.jfranklin.2017.09.024. Google Scholar

[122]

Q. Zhu and X. Li, Exponential and almost sure exponential stability of stochastic fuzzy delayed Cohen-Grossberg neural networks, Fuzzy Sets and Systems, 203 (2012), 74-94. doi: 10.1016/j.fss.2012.01.005. Google Scholar

[123]

Q. ZhuF. Xi and X. Li, Robust exponential stability of stochastically nonlinear jump systems with mixed time delays, Journal of Optimization Theory and Applications, 154 (2012), 154-174. doi: 10.1007/s10957-012-9997-5. Google Scholar

[124]

M. ZouA. Liu and Z. Zhang, Oscillation theorems for impulsive parabolic differential system of neutral type, Discrete & Continuous Dynamical Systems-B, 22 (2017), 2351-2363. doi: 10.3934/dcdsb.2017103. Google Scholar

Figure 3.1.  (a) State trajectory of system (3) without impulse control. (b) State trajectory of system (3) with impulsive stabilization
Figure 3.2.  (a) State trajectory of system (4) without impulsive perturbation. (b) State trajectory of system (4) with impulsive perturbation
Figure 3.3.  Impulsive sequence
Figure 4.2.  (a) State trajectories of system (9) with $\omega$ = 2 without impulsive control. (b) Phase portraits of system (9) with $\omega$ = 2 without impulsive control. (c) State trajectories of system (9) with $\omega$ = 8 without impulsive control. (d) Phase portraits of system (9) with $\omega$ = 8 without impulsive control
Figure 4.3.  (a) State trajectory of system (9) with $\omega = 2,\rho = 1.5,\mu = 0.5.$ (b) Phase portraits of system (9) with $\omega = 2,\rho = 1.5,\mu = 0.5.$ (c) State trajectory of system (9) with $\omega = 8,\rho = 1.5,\mu = 0.5.$ (d) Phase portraits of system (9) with $\omega = 8,\rho = 1.5,\mu = 0.5.$
Figure 5.3.  (a) State trajectories of (10) without impulse. (b) State trajectories of system (10) with impulsive perturbation
[1]

Yong Ren, Wensheng Yin, Dongjin Zhu. Exponential stability of SDEs driven by $G$-Brownian motion with delayed impulsive effects: average impulsive interval approach. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3347-3360. doi: 10.3934/dcdsb.2018248

[2]

Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1477-1498. doi: 10.3934/mbe.2017077

[3]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[4]

Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1

[5]

C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435

[6]

Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164

[7]

Honglei Xu, Kok Lay Teo, Weihua Gui. Necessary and sufficient conditions for stability of impulsive switched linear systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1185-1195. doi: 10.3934/dcdsb.2011.16.1185

[8]

Y. Peng, X. Xiang. Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls. Journal of Industrial & Management Optimization, 2008, 4 (1) : 17-32. doi: 10.3934/jimo.2008.4.17

[9]

Aram Arutyunov, Dmitry Karamzin, Fernando L. Pereira. On a generalization of the impulsive control concept: Controlling system jumps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 403-415. doi: 10.3934/dcds.2011.29.403

[10]

George Ballinger, Xinzhi Liu. Boundedness criteria in terms of two measures for impulsive systems. Conference Publications, 1998, 1998 (Special) : 79-88. doi: 10.3934/proc.1998.1998.79

[11]

John R. Graef, János Karsai. Oscillation and nonoscillation in nonlinear impulsive systems with increasing energy. Conference Publications, 2001, 2001 (Special) : 166-173. doi: 10.3934/proc.2001.2001.166

[12]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[13]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

[14]

Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. Impulsive control of a symmetric ball rolling without sliding or spinning. Journal of Geometric Mechanics, 2010, 2 (4) : 321-342. doi: 10.3934/jgm.2010.2.321

[15]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[16]

Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329

[17]

Meng Zhang, Kaiyuan Liu, Lansun Chen, Zeyu Li. State feedback impulsive control of computer worm and virus with saturated incidence. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1465-1478. doi: 10.3934/mbe.2018067

[18]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[19]

Elena K. Kostousova. State estimation for linear impulsive differential systems through polyhedral techniques. Conference Publications, 2009, 2009 (Special) : 466-475. doi: 10.3934/proc.2009.2009.466

[20]

Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control & Related Fields, 2018, 8 (2) : 475-490. doi: 10.3934/mcrf.2018019

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (112)
  • HTML views (379)
  • Cited by (0)

Other articles
by authors

[Back to Top]