December  2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068

Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

Department of Mathematics, Faculty of Education, University of Khartoum, Khartoum 321, Sudan

3. 

School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China

* Corresponding author: zglin68@hotmail.com (Z. G. Lin)

Received  June 05, 2018 Revised  August 13, 2018 Published  September 2018

Fund Project: The second author is supported by the NNSF of China (Grant No. 11701206) and the third author is supported by the NNSF of China (Grant No. 11771381)

This paper is concerned with a strongly-coupled elliptic system, which describes a West Nile virus (WNv) model with cross-diffusion in a heterogeneous environment. The basic reproduction number is introduced through the next generation infection operator and some related eigenvalue problems. The existence of coexistence states is presented by using a method of upper and lower solutions. The true positive solutions are obtained by monotone iterative schemes. Our results show that a cross-diffusive WNv model possesses at least one coexistence solution if the basic reproduction number is greater than one and the cross-diffusion rates are small enough, while if the basic reproduction number is less than or equal to one, the model has no positive solution. To illustrate the impact of cross-diffusion and environmental heterogeneity on the transmission of WNv, some numerical simulations are given.

Citation: Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin. Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1479-1494. doi: 10.3934/mbe.2018068
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1. Google Scholar

[2]

P. Álvarez-Caudevilla and J. López-Gómez, Asymptotic behaviour of principal eigenvalues for a class of cooperative systems, J. Differential Equations, 244 (2008), 1093-1113. doi: 10.1016/j.jde.2007.10.004. Google Scholar

[3]

D. S. AsnisR. ConettaA. A. TeixeiraG. Waldman and B. A. Sampson, The West Nile virus outbreak of 1999 in New York: The flushing hospital experience, Clinical Infect Dis., 30 (2000), 413-418. doi: 10.1086/313737. Google Scholar

[4]

K. W. BlaynechA. B. GumelS. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bull. Math. Biol., 72 (2010), 1006-1028. doi: 10.1007/s11538-009-9480-0. Google Scholar

[5]

E. Braverman and Md. Kamrujjaman, Competitive-cooperative models with various diffusion strategies, Comput. Math. Appl., 72 (2016), 653-662. doi: 10.1016/j.camwa.2016.05.017. Google Scholar

[6]

B. Chen and R. Peng, Coexistence states of a strongly coupled prey-predator model, J. Partial Diff. Eqs., 18 (2005), 154-166. Google Scholar

[7]

V. ChevalierA. Tran and B. Durand, Predictive modeling of west nile virus transmission risk in the mediterranean basin, Int. J. Environ. Res. Public Health, 11 (2014), 67-90. doi: 10.3390/ijerph110100067. Google Scholar

[8]

G. Cruz-PachecoL. Esteva and C. Vargas, Seasonality and outbreaks in west nile virus infection, Bull. Math. Biol., 71 (2009), 1378-1393. doi: 10.1007/s11538-009-9406-x. Google Scholar

[9]

D. G. de Figueiredo and E. Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal., 17 (1986), 836-849. doi: 10.1137/0517060. Google Scholar

[10]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. Google Scholar

[11]

S. FuL. Zhang and P. Hu, Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure, Nonlinear Anal. Real World Appl., 14 (2013), 2027-2045. doi: 10.1016/j.nonrwa.2013.02.007. Google Scholar

[12]

W. Gan and Z. Lin, Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model, J. Math. Anal. Appl., 337 (2008), 1089-1099. doi: 10.1016/j.jmaa.2007.04.022. Google Scholar

[13]

D. Horstmann, Remarks on some Lotka-Volterra type cross-diffusion models, Nonlinear Anal. Real World Appl., 8 (2007), 90-117. doi: 10.1016/j.nonrwa.2005.05.008. Google Scholar

[14]

M. IidaM. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive iteraction, J. Math. Biol., 53 (2006), 617-641. doi: 10.1007/s00285-006-0013-2. Google Scholar

[15]

D. J. JamiesonJ. E. EllisD. B. Jernigan and T. A. Treadwell, Emerging infectious disease outbreaks: Old lessons and new challenges for obstetrician-gynecologists, Am. J. Obstet. Gynecol., 194 (2006), 1546-1555. doi: 10.1016/j.ajog.2005.06.062. Google Scholar

[16]

Y. JiaJ. Wu and H. Xu, Positive solutions of Lotka-Volterra competition model with cross-diffusion, Comput. Math. Appl., 68 (2014), 1220-1228. doi: 10.1016/j.camwa.2014.08.016. Google Scholar

[17]

A. Jüngel and I. V. Stelzer, Entropy structure of a cross-diffusion tumor-growth model, Math. Models Methods Appl. Sci., 22 (2012), 1250009, 26pp. doi: 10.1142/S0218202512500091. Google Scholar

[18]

K. I. Kim and Z. G. Lin, Coexistence of three species in a strongly coupled elliptic system, Nonlinear Anal., 55 (2003), 313-333. doi: 10.1016/S0362-546X(03)00242-6. Google Scholar

[19]

W. Ko and K. Ryu, On a predator-prey system with cross-diffusion representing the tendency of prey to keep away from its predators, Appl. Math. Lett., 21 (2008), 1177-1183. doi: 10.1016/j.aml.2007.12.018. Google Scholar

[20]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348. doi: 10.1016/j.jde.2003.08.003. Google Scholar

[21]

M. LewisJ. Renclawowicz and P. Driessche, Travalling waves and spread rates for a west nile virus model, Bull. Math. Biol., 68 (2006), 3-23. doi: 10.1007/s11538-005-9018-z. Google Scholar

[22]

S. Li, J. Wu and S. Liu, Effect of cross-diffusion on the stationary problem of a Leslie prey-predator model with a protection zone, Calc. Var. Partial Differential Equations, 56 (2017), Art. 82, 35 pp. doi: 10.1007/s00526-017-1159-z. Google Scholar

[23]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409. doi: 10.1007/s00285-017-1124-7. Google Scholar

[24]

Y. LouW. M. Ni and Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dynam. Sys A, 4 (1998), 193-203. doi: 10.3934/dcds.1998.4.193. Google Scholar

[25]

Y. LouW. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458. doi: 10.3934/dcds.2004.10.435. Google Scholar

[26]

D. Nash, F. Mostashari and A. Fine, etc., The Outbreak of West Nile Virus Infection in New York city area in 1999, N. Engl. Med., 344 (2001), 1807-1814. doi: 10.1056/NEJM200106143442401. Google Scholar

[27] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Google Scholar
[28]

C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion, Nonlinear Anal., 60 (2005), 1197-1217. doi: 10.1016/j.na.2004.10.008. Google Scholar

[29]

K. A. RahmanR. Sudarsan and H. J. Eberl, A mixed-culture biofilm model with cross-diffusion, Bull. Math. Biol., 77 (2015), 2086-2124. doi: 10.1007/s11538-015-0117-1. Google Scholar

[30]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst., 9 (2003), 1049-1061. doi: 10.3934/dcds.2003.9.1049. Google Scholar

[31]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3. Google Scholar

[32]

S. Shim, Long time properties of prey-predator system with cross diffusion, Comm. Korean Math. Soc., 21 (2006), 293-320. doi: 10.4134/CKMS.2006.21.2.293. Google Scholar

[33]

G. Sweers, Strong positivity in $C(\overline Ω)$ for elliptic systems, Math. Z., 209 (1992), 251-271. doi: 10.1007/BF02570833. Google Scholar

[34]

A. K. TarboushZ. G. Lin and M. Y. Zhang, Spreading and vanishing in a West Nile virus model with expanding fronts, Sci. China Math., 60 (2017), 841-860. doi: 10.1007/s11425-016-0367-4. Google Scholar

[35]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[36]

H. Wan and H. Zhu, The backward bifurcation in compartmental models for West Nile virus, Math. Biosci., 272 (2010), 20-28. doi: 10.1016/j.mbs.2010.05.006. Google Scholar

[37]

W. D. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942. Google Scholar

[38]

Z. Wen and S. Fu, Turing instability for a competitor-competitor-mutualist model with nonlinear cross-diffusion effects, Chaos Solitons Fractals, 91 (2016), 379-385. doi: 10.1016/j.chaos.2016.06.019. Google Scholar

[39]

M. J. WonhamT. C. Beck and M. A. Lewis, An epidemiology model for West Nile virus: Invansion analysis and control applications, Proc. R. Soc. Lond B, 271 (2004), 501-507. Google Scholar

[40]

Y. P. Wu, The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340. doi: 10.1016/j.jde.2004.08.015. Google Scholar

[41]

X. Q. Zhao, Dynamical Systems in Population Biology, Second edition, CMS Books in Mathematics/Ouvrages de Math$\acute{e} $matiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3. Google Scholar

[42]

H. Zhou and Z. G. Lin, Coexistence in a stroungly coupled system describing a two-species cooperative model, Appl. Math. Lett., 20 (2007), 1126-1130. doi: 10.1016/j.aml.2006.11.012. Google Scholar

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1. Google Scholar

[2]

P. Álvarez-Caudevilla and J. López-Gómez, Asymptotic behaviour of principal eigenvalues for a class of cooperative systems, J. Differential Equations, 244 (2008), 1093-1113. doi: 10.1016/j.jde.2007.10.004. Google Scholar

[3]

D. S. AsnisR. ConettaA. A. TeixeiraG. Waldman and B. A. Sampson, The West Nile virus outbreak of 1999 in New York: The flushing hospital experience, Clinical Infect Dis., 30 (2000), 413-418. doi: 10.1086/313737. Google Scholar

[4]

K. W. BlaynechA. B. GumelS. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bull. Math. Biol., 72 (2010), 1006-1028. doi: 10.1007/s11538-009-9480-0. Google Scholar

[5]

E. Braverman and Md. Kamrujjaman, Competitive-cooperative models with various diffusion strategies, Comput. Math. Appl., 72 (2016), 653-662. doi: 10.1016/j.camwa.2016.05.017. Google Scholar

[6]

B. Chen and R. Peng, Coexistence states of a strongly coupled prey-predator model, J. Partial Diff. Eqs., 18 (2005), 154-166. Google Scholar

[7]

V. ChevalierA. Tran and B. Durand, Predictive modeling of west nile virus transmission risk in the mediterranean basin, Int. J. Environ. Res. Public Health, 11 (2014), 67-90. doi: 10.3390/ijerph110100067. Google Scholar

[8]

G. Cruz-PachecoL. Esteva and C. Vargas, Seasonality and outbreaks in west nile virus infection, Bull. Math. Biol., 71 (2009), 1378-1393. doi: 10.1007/s11538-009-9406-x. Google Scholar

[9]

D. G. de Figueiredo and E. Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal., 17 (1986), 836-849. doi: 10.1137/0517060. Google Scholar

[10]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. Google Scholar

[11]

S. FuL. Zhang and P. Hu, Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure, Nonlinear Anal. Real World Appl., 14 (2013), 2027-2045. doi: 10.1016/j.nonrwa.2013.02.007. Google Scholar

[12]

W. Gan and Z. Lin, Coexistence and asymptotic periodicity in a competitor-competitor-mutualist model, J. Math. Anal. Appl., 337 (2008), 1089-1099. doi: 10.1016/j.jmaa.2007.04.022. Google Scholar

[13]

D. Horstmann, Remarks on some Lotka-Volterra type cross-diffusion models, Nonlinear Anal. Real World Appl., 8 (2007), 90-117. doi: 10.1016/j.nonrwa.2005.05.008. Google Scholar

[14]

M. IidaM. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive iteraction, J. Math. Biol., 53 (2006), 617-641. doi: 10.1007/s00285-006-0013-2. Google Scholar

[15]

D. J. JamiesonJ. E. EllisD. B. Jernigan and T. A. Treadwell, Emerging infectious disease outbreaks: Old lessons and new challenges for obstetrician-gynecologists, Am. J. Obstet. Gynecol., 194 (2006), 1546-1555. doi: 10.1016/j.ajog.2005.06.062. Google Scholar

[16]

Y. JiaJ. Wu and H. Xu, Positive solutions of Lotka-Volterra competition model with cross-diffusion, Comput. Math. Appl., 68 (2014), 1220-1228. doi: 10.1016/j.camwa.2014.08.016. Google Scholar

[17]

A. Jüngel and I. V. Stelzer, Entropy structure of a cross-diffusion tumor-growth model, Math. Models Methods Appl. Sci., 22 (2012), 1250009, 26pp. doi: 10.1142/S0218202512500091. Google Scholar

[18]

K. I. Kim and Z. G. Lin, Coexistence of three species in a strongly coupled elliptic system, Nonlinear Anal., 55 (2003), 313-333. doi: 10.1016/S0362-546X(03)00242-6. Google Scholar

[19]

W. Ko and K. Ryu, On a predator-prey system with cross-diffusion representing the tendency of prey to keep away from its predators, Appl. Math. Lett., 21 (2008), 1177-1183. doi: 10.1016/j.aml.2007.12.018. Google Scholar

[20]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348. doi: 10.1016/j.jde.2003.08.003. Google Scholar

[21]

M. LewisJ. Renclawowicz and P. Driessche, Travalling waves and spread rates for a west nile virus model, Bull. Math. Biol., 68 (2006), 3-23. doi: 10.1007/s11538-005-9018-z. Google Scholar

[22]

S. Li, J. Wu and S. Liu, Effect of cross-diffusion on the stationary problem of a Leslie prey-predator model with a protection zone, Calc. Var. Partial Differential Equations, 56 (2017), Art. 82, 35 pp. doi: 10.1007/s00526-017-1159-z. Google Scholar

[23]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409. doi: 10.1007/s00285-017-1124-7. Google Scholar

[24]

Y. LouW. M. Ni and Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dynam. Sys A, 4 (1998), 193-203. doi: 10.3934/dcds.1998.4.193. Google Scholar

[25]

Y. LouW. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458. doi: 10.3934/dcds.2004.10.435. Google Scholar

[26]

D. Nash, F. Mostashari and A. Fine, etc., The Outbreak of West Nile Virus Infection in New York city area in 1999, N. Engl. Med., 344 (2001), 1807-1814. doi: 10.1056/NEJM200106143442401. Google Scholar

[27] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Google Scholar
[28]

C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models with cross-diffusion, Nonlinear Anal., 60 (2005), 1197-1217. doi: 10.1016/j.na.2004.10.008. Google Scholar

[29]

K. A. RahmanR. Sudarsan and H. J. Eberl, A mixed-culture biofilm model with cross-diffusion, Bull. Math. Biol., 77 (2015), 2086-2124. doi: 10.1007/s11538-015-0117-1. Google Scholar

[30]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst., 9 (2003), 1049-1061. doi: 10.3934/dcds.2003.9.1049. Google Scholar

[31]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3. Google Scholar

[32]

S. Shim, Long time properties of prey-predator system with cross diffusion, Comm. Korean Math. Soc., 21 (2006), 293-320. doi: 10.4134/CKMS.2006.21.2.293. Google Scholar

[33]

G. Sweers, Strong positivity in $C(\overline Ω)$ for elliptic systems, Math. Z., 209 (1992), 251-271. doi: 10.1007/BF02570833. Google Scholar

[34]

A. K. TarboushZ. G. Lin and M. Y. Zhang, Spreading and vanishing in a West Nile virus model with expanding fronts, Sci. China Math., 60 (2017), 841-860. doi: 10.1007/s11425-016-0367-4. Google Scholar

[35]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[36]

H. Wan and H. Zhu, The backward bifurcation in compartmental models for West Nile virus, Math. Biosci., 272 (2010), 20-28. doi: 10.1016/j.mbs.2010.05.006. Google Scholar

[37]

W. D. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942. Google Scholar

[38]

Z. Wen and S. Fu, Turing instability for a competitor-competitor-mutualist model with nonlinear cross-diffusion effects, Chaos Solitons Fractals, 91 (2016), 379-385. doi: 10.1016/j.chaos.2016.06.019. Google Scholar

[39]

M. J. WonhamT. C. Beck and M. A. Lewis, An epidemiology model for West Nile virus: Invansion analysis and control applications, Proc. R. Soc. Lond B, 271 (2004), 501-507. Google Scholar

[40]

Y. P. Wu, The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340. doi: 10.1016/j.jde.2004.08.015. Google Scholar

[41]

X. Q. Zhao, Dynamical Systems in Population Biology, Second edition, CMS Books in Mathematics/Ouvrages de Math$\acute{e} $matiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3. Google Scholar

[42]

H. Zhou and Z. G. Lin, Coexistence in a stroungly coupled system describing a two-species cooperative model, Appl. Math. Lett., 20 (2007), 1126-1130. doi: 10.1016/j.aml.2006.11.012. Google Scholar

Figure 1.  Phase diagrams of $I_b(x)$ and $I_m(x)$ showing the existence of a positive solution of (4) for small cross-diffusion ($\beta_1 = 0.001$ and $ \beta_2 = 0.002$)
Figure 2.  Phase diagrams of $I_b(x,t)$ and $I_m(x,t)$ shows that the solution of (3) exists and stabilizes to a positive steady-state for small cross-diffusion ($\beta_1 = 0.132$ and $ \beta_2 = 0.11$)
Figure 3.  Phase diagrams of $I_b(x)$ and $I_m(x)$ shows that the global solution of (3) does not exist for big cross-diffusion ($\beta_1 = 0.133$ and $ \beta_2 = 0.11$)
[1]

Louis D. Bergsman, James M. Hyman, Carrie A. Manore. A mathematical model for the spread of west nile virus in migratory and resident birds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 401-424. doi: 10.3934/mbe.2015009

[2]

Rongsong Liu, Jiangping Shuai, Jianhong Wu, Huaiping Zhu. Modeling spatial spread of west nile virus and impact of directional dispersal of birds. Mathematical Biosciences & Engineering, 2006, 3 (1) : 145-160. doi: 10.3934/mbe.2006.3.145

[3]

Jing Chen, Jicai Huang, John C. Beier, Robert Stephen Cantrell, Chris Cosner, Douglas O. Fuller, Guoyan Zhang, Shigui Ruan. Modeling and control of local outbreaks of West Nile virus in the United States. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2423-2449. doi: 10.3934/dcdsb.2016054

[4]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[5]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[6]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[7]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[8]

Xianjin Chen, Jianxin Zhou. A local min-orthogonal method for multiple solutions of strongly coupled elliptic systems. Conference Publications, 2009, 2009 (Special) : 151-160. doi: 10.3934/proc.2009.2009.151

[9]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[10]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2019166

[11]

Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576-586. doi: 10.3934/proc.2005.2005.576

[12]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[13]

Dung Le. Global existence and regularity results for strongly coupled nonregular parabolic systems via iterative methods. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 877-893. doi: 10.3934/dcdsb.2017044

[14]

Claude-Michel Brauner, Danaelle Jolly, Luca Lorenzi, Rodolphe Thiebaut. Heterogeneous viral environment in a HIV spatial model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 545-572. doi: 10.3934/dcdsb.2011.15.545

[15]

Alexander V. Budyansky, Kurt Frischmuth, Vyacheslav G. Tsybulin. Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 547-561. doi: 10.3934/dcdsb.2018196

[16]

Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209

[17]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[18]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[19]

Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134

[20]

Shin-Ichiro Ei, Hiroshi Matsuzawa. The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 901-921. doi: 10.3934/dcds.2010.26.901

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (82)
  • HTML views (279)
  • Cited by (0)

Other articles
by authors

[Back to Top]