# American Institute of Mathematical Sciences

• Previous Article
Mathematical analysis of a weather-driven model for the population ecology of mosquitoes
• MBE Home
• This Issue
• Next Article
The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally)
February  2018, 15(1): 21-56. doi: 10.3934/mbe.2018002

## Modeling Ebola Virus Disease transmissions with reservoir in a complex virus life ecology

 1 Department of Mathematics and Computer Science, University of Dschang, P.O. Box 67 Dschang, Cameroon 2 Department of Mathematics and Computer Science, University of Douala, P.O. Box 24157 Douala, Cameroon 3 Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa 4 Department of Mathematics, Faculty of Sciences, University of Yaounde 1, P.O. Box 812 Yaounde, Cameroon

* Corresponding author: Tsanou Berge

1IRD UMI 209 UMMISCO, University of Yaounde I, P.O. Box 337 Yaounde and LIRIMAGRIMCAPE Team Project, University of Yaounde I, P.O. Box 812 Yaounde, Cameroon

Received  September 14, 2016 Accepted  March 31, 2017 Published  May 2017

We propose a new deterministic mathematical model for the transmission dynamics of Ebola Virus Disease (EVD) in a complex Ebola virus life ecology. Our model captures as much as possible the features and patterns of the disease evolution as a three cycle transmission process in the two ways below. Firstly it involves the synergy between the epizootic phase (during which the disease circulates periodically amongst non-human primates populations and decimates them), the enzootic phase (during which the disease always remains in fruit bats population) and the epidemic phase (during which the EVD threatens and decimates human populations). Secondly it takes into account the well-known, the probable/suspected and the hypothetical transmission mechanisms (including direct and indirect routes of contamination) between and within the three different types of populations consisting of humans, animals and fruit bats. The reproduction number $\mathcal R_0$ for the full model with the environmental contamination is derived and the global asymptotic stability of the disease free equilibrium is established when $\mathcal R_0 < 1$. It is conjectured that there exists a unique globally asymptotically stable endemic equilibrium for the full model when $\mathcal R_0>1$. The role of a contaminated environment is assessed by comparing the human infected component for the sub-model without the environment with that of the full model. Similarly, the sub-model without animals on the one hand and the sub-model without bats on the other hand are studied. It is shown that bats influence more the dynamics of EVD than the animals. Global sensitivity analysis shows that the effective contact rate between humans and fruit bats and the mortality rate for bats are the most influential parameters on the latent and infected human individuals. Numerical simulations, apart from supporting the theoretical results and the existence of a unique globally asymptotically stable endemic equilibrium for the full model, suggest further that: (1) fruit bats are more important in the transmission processes and the endemicity level of EVD than animals. This is in line with biological findings which identified bats as reservoir of Ebola viruses; (2) the indirect environmental contamination is detrimental to human beings, while it is almost insignificant for the transmission in bats.

Citation: Tsanou Berge, Samuel Bowong, Jean Lubuma, Martin Luther Mann Manyombe. Modeling Ebola Virus Disease transmissions with reservoir in a complex virus life ecology. Mathematical Biosciences & Engineering, 2018, 15 (1) : 21-56. doi: 10.3934/mbe.2018002
##### References:

show all references

##### References:
Ebola Virus Disease transmission flow diagram
GAS of the full model disease-free equilibrium when $\Lambda_h=500$, $\mu_h=0.033$, $\mu_a=0.04$, $\mu_b=0.05$, $\mu_v=0.85$, $\tau_h=4$, $\delta_a=0.05$, $\alpha_h=\alpha_a=\alpha_b=0.95$, $f=0.50$, $\beta_{hh}=0.006$, $\beta_{hv}=\beta_{bv}= \beta_{av}=\beta_{ab}=0.0005$, $\beta_{hb}=\beta_{ha}=10^{-8}$, $\beta_{bb}= \beta_{aa}=0.0002$ (so that $\mathcal R_0=0.8<1$)
Stability of the full model endemic equilibrium when $\Lambda_h=100$, $\mu_h=0.033$, $\mu_a=0.04$, $\mu_b=0.05$, $\mu_v=0.85$, $\tau_h=4$, $\delta_a=0.05$, $\alpha_h=\alpha_a=\alpha_b=0.95$, $f=0.50$, $\beta_{hh}=0.3$, $\beta_{hv}=0.5$, $\beta_{bv}=0.5$, $\beta_{bb}=0.0005$, $\beta_{hb}=\beta_{ha}=10^{-8}$, $\beta_{ab}=0.005$, $\beta_{aa}=0.02$, $\beta_{av}=0.5$ (so that $\mathcal R_0=2.0024>1$)
Stability of $(\overline{P}_h, P^0_a, P^0_b)$ when $\Lambda_h=10$, $\Lambda_a=3$, $\Lambda_b=1.5$, $\mu_h=0.033$, $\mu_a=0.2$, $\mu_b=0.29$, $\delta_a=0.05$, $\alpha_h=\alpha_a=\alpha_b=0.95$, $f=0.50$, $\beta_{hh}=0.3$, $\beta_{bb}=0.05$, $\beta_{hb}=\beta_{ha}=10^{-8}$, $\beta_{ab}=0.05$, $\beta_{aa}=0.2$ (so that $\mathcal R_{0, h}=1.7269$, $\mathcal R_{0, a}=0.8074$, $\mathcal R_{0, b}=0.8918$)
Stability of $(P^0_h, P^0_a, P^0_b)$ when $\Lambda_h=10$, $\Lambda_a=3$, $\Lambda_b=1.5$, $\mu_h=0.033$, $\mu_a=0.2$, $\mu_b=0.29$, $\delta_a=0.05$, $\alpha_h=\alpha_a=\alpha_b=0.95$, $f=0.50$, $\beta_{hh}=0.03$, $\beta_{bb}=0.05$, $\beta_{hb}=\beta_{ha}=10^{-8}$, $\beta_{ab}=0.05$, $\beta_{aa}=0.2$ (so that $\mathcal R_{0, h}=0.1727$, $\mathcal R_{0, a}=0.8074$, $\mathcal R_{0, b}=0.8918$)
Stability of $(E_h^{**}, \overline{P}_a, P^0_b)$ when $\Lambda_h=10$, $\Lambda_a=10$, $\Lambda_b=1.5$, $\mu_h=0.033$, $\mu_a=0.04$, $\mu_b=0.29$, $\delta_a=0.05$, $\alpha_h=\alpha_a=\alpha_b=0.95$, $f=0.50$, $\beta_{hh}=0.3$, $\beta_{bb}=0.05$, $\beta_{hb}=\beta_{ha}=10^{-8}$, $\beta_{ab}=0.05$, $\beta_{aa}=0.2$ (so that $\mathcal R_{0, h}=1.7269$, $\mathcal R_{0, a}=2.2429$, $\mathcal R_{0, b}=0.8918$)
Stability of $(E_h^{***}, \widehat{E}_a, \overline{P}_b)$ when $\Lambda_h=10$, $\Lambda_a=10$, $\Lambda_b=10$, $\mu_h=0.033$, $\mu_a=0.2$, $\mu_b=0.29$, $\delta_a=0.05$, $\alpha_h=\alpha_a=\alpha_b=0.95$, $f=0.50$, $\beta_{hh}=0.3$, $\beta_{bb}=0.05$, $\beta_{hb}=\beta_{ha}=10^{-8}$, $\beta_{ab}=0.05$, $\beta_{aa}=0.2$ (so that $\mathcal R_{0, h}=1.7269$, $\mathcal R_{0, a}=0.8074$, $\mathcal R_{0, b}=3.1250$)
Infected population with and without environment when $\Lambda_h=400$, $\Lambda_a=100$, $\Lambda_b=80$, $\mu_h=0.033$, $\mu_a=0.04$, $\mu_b=0.09$, $\mu_v=0.85$, $\tau_h=4$, $\delta_a=0.5$, $\alpha_h=\alpha_a=\alpha_b=0.95$, $f=0.50$, $\beta_{aa}=0.5$, $\beta_{bb}=\beta_{ab}=0.0005$, $\beta_{hb}=\beta_{ha}=10^{-8}$. (A) $\beta_{hh}=0.3$, $\beta_{hv}=\beta_{bv}=\beta_{av}=0.25$. (B) $\beta_{hh}=0.2$, $\beta_{hv}=\beta_{bv}=\beta_{av}=0.4$
(A) Infected population with and without bats when $\Lambda_a=100$, $\mu_a=0.04$, $\delta_a=0.5$, $\nu_a=0.04$, $\alpha_a=0.95$, $\beta_{aa}=0.5$, $\beta_{ha}=10^{-8}$, $\beta_{av}=0.4$. (B) Infected population with and without animals when $\Lambda_b=80$, $\mu_b=0.09$, $\nu_b=0.09$, $\alpha_b=0.95$, $\beta_{hb}=10^{-8}$, $\beta_{bb}=0.0005$, $\beta_{bv}=0.4$. With $\Lambda_h=400$, $\mu_h=0.033$, $\mu_v=0.85$, $\tau_h=4$, $\alpha_h=0.95$, $f=0.50$, $\beta_{hh}=0.3$, $\beta_{hv}=0.4$
Routes of transmission for index case in some known Ebola virus outbreaks
 Year Country Species Starting date Source of infection 1976 DRC Zaire September Unknown. Index case was a mission school teacher. 1976 Sudan Sudan June Worker in a cotton factory. Evidence of bats at site. 1977 DRC Zaire June Unknown (retrospective). 1979 Sudan Sudan July Worker in cotton factory. Evidence of bats at site. 1994 Gabon Zaire December Gold-mining camps. Evidence of bats at site. 1994 Ivory Coast Ivory Coast November Scientist performing autopsy on a dead wild chimpanzee. 1995 Liberia Ivory Coast December Unknown. Refugee from civil war. 1995 DRC Zaire January Index case worked in a forest adjoining the city. 1996 Gabon Zaire January People involved in the butchering of a dead chimpanzee. 1996-1997 Gabon Zaire July Index case was a hunter living in a forest camp. 2000-2001 Uganda Sudan September Unknown. 2001-2002 Gabon Zaire October Contact with dead or butchered apes or other wildlife. 2001-2002 DRC Zaire October Contact with dead or butchered apes or other wildlife. 2002-2003 DRC Zaire December Contact with dead or butchered apes or other wildlife. 2003 DRC Zaire November Contact with dead or butchered apes or other wildlife. 2004 Sudan Sudan May Unknown. 2005 DRC Zaire April unknown. 2007 DRC Zaire December Contact with dead or butchered apes or other wildlife. 2007 Uganda Bundibugyo December Unknown. 2008 DRC Zaire December Index case was a village chief and a hunter. 2012 Uganda Bundibugyo June Index case was a secondary school teacher in Ibanda district. 2012 DRC Zaire June Index case was a hunter living in a forest camp. 2013-2015 Guinea Zaire December Contact with bats or fruits contaminated by bat droppings. 2014-2015 Liberia Zaire April Index case was transported from Guinea. 2014-2015 Sierra Leone Zaire April A traditional healer, treating Ebola patients from Guinea. 2014 DRC Zaire August Pregnant women who butchered a bush animal.
 Year Country Species Starting date Source of infection 1976 DRC Zaire September Unknown. Index case was a mission school teacher. 1976 Sudan Sudan June Worker in a cotton factory. Evidence of bats at site. 1977 DRC Zaire June Unknown (retrospective). 1979 Sudan Sudan July Worker in cotton factory. Evidence of bats at site. 1994 Gabon Zaire December Gold-mining camps. Evidence of bats at site. 1994 Ivory Coast Ivory Coast November Scientist performing autopsy on a dead wild chimpanzee. 1995 Liberia Ivory Coast December Unknown. Refugee from civil war. 1995 DRC Zaire January Index case worked in a forest adjoining the city. 1996 Gabon Zaire January People involved in the butchering of a dead chimpanzee. 1996-1997 Gabon Zaire July Index case was a hunter living in a forest camp. 2000-2001 Uganda Sudan September Unknown. 2001-2002 Gabon Zaire October Contact with dead or butchered apes or other wildlife. 2001-2002 DRC Zaire October Contact with dead or butchered apes or other wildlife. 2002-2003 DRC Zaire December Contact with dead or butchered apes or other wildlife. 2003 DRC Zaire November Contact with dead or butchered apes or other wildlife. 2004 Sudan Sudan May Unknown. 2005 DRC Zaire April unknown. 2007 DRC Zaire December Contact with dead or butchered apes or other wildlife. 2007 Uganda Bundibugyo December Unknown. 2008 DRC Zaire December Index case was a village chief and a hunter. 2012 Uganda Bundibugyo June Index case was a secondary school teacher in Ibanda district. 2012 DRC Zaire June Index case was a hunter living in a forest camp. 2013-2015 Guinea Zaire December Contact with bats or fruits contaminated by bat droppings. 2014-2015 Liberia Zaire April Index case was transported from Guinea. 2014-2015 Sierra Leone Zaire April A traditional healer, treating Ebola patients from Guinea. 2014 DRC Zaire August Pregnant women who butchered a bush animal.
Model constant parameters and their biological interpretation
 Symbols Biological interpretations $\Lambda_{h}, \Lambda_a, \Lambda_b$ Recruitment rate of susceptible humans, animals and bats, respectively. $\mu_{h}, \mu_{a}, \mu_{b}$ Natural mortality rate of humans, animals and bats, respectively. $\nu_h$ Virulence of Ebola virus in the corpse of the dead humans. $\tau_h$ Mean duration of time that elapse after death before a human cadaver is completely buried. $\xi_{h}= 1/\tau_h$ Modification parameter of infectiousness due to dead human individuals. $\tau_a$ Mean duration of time that elapse after death before an animal's cadaver is completely cleared out. $\xi_{a} =1/\tau_a$ Modification parameter of infectiousness due to dead animals individuals. $\nu_a$ Virulence of Ebola virus in the corpse of dead animals. $\omega$ Incubation rate of human individuals. $\gamma$ Removal rate from infectious compartment due to either to disease induced death, or by recovery. $\delta_a$ Death rate of infected animals. $\alpha_h, \alpha_a, \alpha_b$ Shedding rates of Ebola virus in the environment by humans, animals and bats, respectively. $r_h$ Mean duration of time that elapse before the complete clearance of Ebola virus in humans. $\theta_h = 1/r_h$ Modification parameter of contact rate of recovered humans (sexual activity of recovered). in the semen/breast milk of a recovered man/woman. $f$ Proortion of removed human individuals who die due EVD (i.e. case fatality rate). $K$ Virus 50 % infectious dose, sufficient to cause EVD. $\beta_{hh}$ Contact rate between susceptible humans and infected humans. $\beta_{hb}$ Contact rate between susceptible humans and bats. $\beta_{hv}$ Contact rate between susceptible humans and Ebola viruses. $\beta_{ha}$ Contact rate between susceptible humans and infected animals. $\beta_{bb}$ Contact rate between susceptible bats and infectious bats. $\beta_{ab}$ Contact rate between susceptible animals and infectious bats. $\beta_{bv}$ Contact rate between susceptible bats and and Ebola viruses. $\beta_{aa}$ Contact rate between susceptible and infected animals. $\beta_{av}$ Contact rate between susceptible animals and Ebola viruses.
 Symbols Biological interpretations $\Lambda_{h}, \Lambda_a, \Lambda_b$ Recruitment rate of susceptible humans, animals and bats, respectively. $\mu_{h}, \mu_{a}, \mu_{b}$ Natural mortality rate of humans, animals and bats, respectively. $\nu_h$ Virulence of Ebola virus in the corpse of the dead humans. $\tau_h$ Mean duration of time that elapse after death before a human cadaver is completely buried. $\xi_{h}= 1/\tau_h$ Modification parameter of infectiousness due to dead human individuals. $\tau_a$ Mean duration of time that elapse after death before an animal's cadaver is completely cleared out. $\xi_{a} =1/\tau_a$ Modification parameter of infectiousness due to dead animals individuals. $\nu_a$ Virulence of Ebola virus in the corpse of dead animals. $\omega$ Incubation rate of human individuals. $\gamma$ Removal rate from infectious compartment due to either to disease induced death, or by recovery. $\delta_a$ Death rate of infected animals. $\alpha_h, \alpha_a, \alpha_b$ Shedding rates of Ebola virus in the environment by humans, animals and bats, respectively. $r_h$ Mean duration of time that elapse before the complete clearance of Ebola virus in humans. $\theta_h = 1/r_h$ Modification parameter of contact rate of recovered humans (sexual activity of recovered). in the semen/breast milk of a recovered man/woman. $f$ Proortion of removed human individuals who die due EVD (i.e. case fatality rate). $K$ Virus 50 % infectious dose, sufficient to cause EVD. $\beta_{hh}$ Contact rate between susceptible humans and infected humans. $\beta_{hb}$ Contact rate between susceptible humans and bats. $\beta_{hv}$ Contact rate between susceptible humans and Ebola viruses. $\beta_{ha}$ Contact rate between susceptible humans and infected animals. $\beta_{bb}$ Contact rate between susceptible bats and infectious bats. $\beta_{ab}$ Contact rate between susceptible animals and infectious bats. $\beta_{bv}$ Contact rate between susceptible bats and and Ebola viruses. $\beta_{aa}$ Contact rate between susceptible and infected animals. $\beta_{av}$ Contact rate between susceptible animals and Ebola viruses.
Existence, conditions for existence and stability of equilibria
 Equilibria Conditions of existence Stability $\left(P^0_h, P^0_a, P^0_b \right)$ $\mathcal R_{0, h}>1, \mathcal R_{0, a}\leq 1, \mathcal R_{0, b} \leq 1$ GAS $\left(\overline{E}_h, P^0_a, P^0_b \right)$ $\mathcal R_{0, h} \leq 1, \mathcal R_{0, a}\leq 1, \mathcal R_{0, b} \leq 1$ GAS $\left(E^{**}_h, \overline{P}_a, P^0_b \right)$ $\mathcal R_{0, a}>1, \mathcal R_{0, b} \leq 1$ GAS $\left(E^{***}_h, \widehat{E}_a, \overline{P}_b\right)$ $\mathcal R_{0, a}\leq 1, \mathcal R_{0, b} > 1$ GAS
 Equilibria Conditions of existence Stability $\left(P^0_h, P^0_a, P^0_b \right)$ $\mathcal R_{0, h}>1, \mathcal R_{0, a}\leq 1, \mathcal R_{0, b} \leq 1$ GAS $\left(\overline{E}_h, P^0_a, P^0_b \right)$ $\mathcal R_{0, h} \leq 1, \mathcal R_{0, a}\leq 1, \mathcal R_{0, b} \leq 1$ GAS $\left(E^{**}_h, \overline{P}_a, P^0_b \right)$ $\mathcal R_{0, a}>1, \mathcal R_{0, b} \leq 1$ GAS $\left(E^{***}_h, \widehat{E}_a, \overline{P}_b\right)$ $\mathcal R_{0, a}\leq 1, \mathcal R_{0, b} > 1$ GAS
PRCCs of full model's parameters
 Parameters $E_h$ $I_h$ $V$ $I_a$ $I_b$ $\Lambda_{h}$ $0.7624^{**}$ 0.2343 0.1922 0.0124 0.0172 $\Lambda_a$ -0.1822 0.2005 0.1610 $0.8914^{**}$ 0.0180 $\Lambda_b$ -0.3116 $0.4407^*$ 0.3008 $-0.5346^{**}$ 0.0132 $\mu_{h}$ $-0.8657^{**}$ $-0.8588^{**}$ $-0.9438^{**}$ -0.0341 0.0329 $\mu_{a}$ 0.1060 -0.1786 -0.1134 $-0.4854^*$ -0.0148 $\mu_{b}$ $0.5677^{**}$ $-0.6054^{**}$ $-0.4335^*$ $0.7106^{**}$ $0.8966^{**}$ $\mu_{v}$ -0.0143 -0.0493 -0.0453 -0.0530 0.0202 $\xi_{h}$ 0.0030 -0.0099 0.284 -0.0491 -0.0250 $\xi_{a}$ -0.0107 0.0630 0.0010 -0.1381 0.0356 $\nu_{h}$ -0.0218 0.0572 0.0200 -0.0509 -0.0518 $\nu_{a}$ -0.1213 0.1149 0.0410 -0.1530 0.0256 $\omega$ -0.1299 -0.2465 $0.5385^{**}$ 0.0513 -0.0613 $\gamma$ 0.0463 -0.0623 0.1735 0.0108 0.0092 $\delta_a$ 0.0239 -0.0450 -0.0185 -0.325 -0.0044 $\alpha_h$ 0.0143 0.0490 -0.0125 0.0067 0.0154 $\alpha_a$ 0.043 0.0177 0.1003 -0.0653 -0.0434 $\alpha_b$ 0.0078 -0.0041 -0.0254 -0.0113 -0.0506 $\theta_h$ 0.0133 0.0073 0.0845 -0.0410 -0.0025 $f$ 0.0142 -0.0065 $-0.4980^{*}$ -0.0320 -0.0106 $K$ 0.0375 -0.0581 0.0141 0.0003 0.0263 $\beta_{hh}$ -0.2682 0.3205 0.1217 0.0220 0.0038 $\beta_{hb}$ -0.3700 $0.5287^{**}$ 0.3747 -0.0114 0.0125 $\beta_{hv}$ 0.0785 0.0106 0.0022 -0.0824 -0.0129 $\beta_{ha}$ -0.1816 0.2399 0.1559 -0.0395 -0.0448 $\beta_{bb}$ 0.0196 0.0757 0.1389 -0.0976 $-0.8883^{**}$ $\beta_{ab}$ -0.0242 0.0984 0.0080 $-0.6039^{**}$ -0.0030 $\beta_{bv}$ -0.0214 -0.0310 -0.0280 -0.0071 0.0391 $\beta_{aa}$ -0.0145 0.1266 -0.0036 $-0.4099^{*}$ -0.0596 $\beta_{av}$ -0.0214 0.0150 0.0718 0.0737 0.0339
 Parameters $E_h$ $I_h$ $V$ $I_a$ $I_b$ $\Lambda_{h}$ $0.7624^{**}$ 0.2343 0.1922 0.0124 0.0172 $\Lambda_a$ -0.1822 0.2005 0.1610 $0.8914^{**}$ 0.0180 $\Lambda_b$ -0.3116 $0.4407^*$ 0.3008 $-0.5346^{**}$ 0.0132 $\mu_{h}$ $-0.8657^{**}$ $-0.8588^{**}$ $-0.9438^{**}$ -0.0341 0.0329 $\mu_{a}$ 0.1060 -0.1786 -0.1134 $-0.4854^*$ -0.0148 $\mu_{b}$ $0.5677^{**}$ $-0.6054^{**}$ $-0.4335^*$ $0.7106^{**}$ $0.8966^{**}$ $\mu_{v}$ -0.0143 -0.0493 -0.0453 -0.0530 0.0202 $\xi_{h}$ 0.0030 -0.0099 0.284 -0.0491 -0.0250 $\xi_{a}$ -0.0107 0.0630 0.0010 -0.1381 0.0356 $\nu_{h}$ -0.0218 0.0572 0.0200 -0.0509 -0.0518 $\nu_{a}$ -0.1213 0.1149 0.0410 -0.1530 0.0256 $\omega$ -0.1299 -0.2465 $0.5385^{**}$ 0.0513 -0.0613 $\gamma$ 0.0463 -0.0623 0.1735 0.0108 0.0092 $\delta_a$ 0.0239 -0.0450 -0.0185 -0.325 -0.0044 $\alpha_h$ 0.0143 0.0490 -0.0125 0.0067 0.0154 $\alpha_a$ 0.043 0.0177 0.1003 -0.0653 -0.0434 $\alpha_b$ 0.0078 -0.0041 -0.0254 -0.0113 -0.0506 $\theta_h$ 0.0133 0.0073 0.0845 -0.0410 -0.0025 $f$ 0.0142 -0.0065 $-0.4980^{*}$ -0.0320 -0.0106 $K$ 0.0375 -0.0581 0.0141 0.0003 0.0263 $\beta_{hh}$ -0.2682 0.3205 0.1217 0.0220 0.0038 $\beta_{hb}$ -0.3700 $0.5287^{**}$ 0.3747 -0.0114 0.0125 $\beta_{hv}$ 0.0785 0.0106 0.0022 -0.0824 -0.0129 $\beta_{ha}$ -0.1816 0.2399 0.1559 -0.0395 -0.0448 $\beta_{bb}$ 0.0196 0.0757 0.1389 -0.0976 $-0.8883^{**}$ $\beta_{ab}$ -0.0242 0.0984 0.0080 $-0.6039^{**}$ -0.0030 $\beta_{bv}$ -0.0214 -0.0310 -0.0280 -0.0071 0.0391 $\beta_{aa}$ -0.0145 0.1266 -0.0036 $-0.4099^{*}$ -0.0596 $\beta_{av}$ -0.0214 0.0150 0.0718 0.0737 0.0339
PRCCs of model's parameters without environment
 Parameters $E_h$ $I_h$ $I_a$ $I_b$ $\Lambda_{h}$ $0.7897^{**}$ 0.3341 0.0602 0.0406 $\Lambda_a$ -0.1412 0.2206 0.8767 -0.0122 $\Lambda_b$ -0.3108 $0.4231^*$ $-0.4185^*$ -0.0214 $\mu_{h}$ $-0.8755^{**}$ $-0.8466^{***}$ 0.0180 0.0341 $\mu_{a}$ 0.0936 -0.2108 $-0.4814^{*}$ -0.0046 $\mu_{b}$ $0.5727^{**}$ $-0.6096^{**}$ $0.7117^{***}$ $0.9040^{***}$ $\xi_{h}$ 0.0055 0.0391 -0.0337 -0.0270 $\xi_{a}$ -0.0913 0.1327 -0.0923 -0.0041 $\nu_{h}$ -0.0183 0.0184 0.0608 -0.0183 $\nu_{a}$ -0.0483 0.0745 -0.0953 -0.0253 $\omega$ -0.1496 -0.2233 0.0116 0.0046 $\gamma$ 0.0124 -0.0410 0.0286 -0.0295 $\delta_a$ 0.0690 -0.0647 -0.3869 0.0175 $\theta_h$ -0.0221 0.0308 0.0099 0.0539 $f$ 0.0035 -0.0057 0.0042 0.0170 $\beta_{hh}$ -0.2865 0.3144 -0.0275 -0.0105 $\beta_{hb}$ -0.3649 $0.4837^{*}$ -0.0063 -0.0131 $\beta_{ha}$ -0.2057 0.3168 0.0372 0.0050 $\beta_{bb}$ -0.0686 0.0757 -0.2270 $-0.8988^{***}$ $\beta_{ab}$ -0.0719 0.0684 $-0.5291^{**}$ -0.0245 $\beta_{aa}$ 0.0063 0.0049 -0.2936 0.0053
 Parameters $E_h$ $I_h$ $I_a$ $I_b$ $\Lambda_{h}$ $0.7897^{**}$ 0.3341 0.0602 0.0406 $\Lambda_a$ -0.1412 0.2206 0.8767 -0.0122 $\Lambda_b$ -0.3108 $0.4231^*$ $-0.4185^*$ -0.0214 $\mu_{h}$ $-0.8755^{**}$ $-0.8466^{***}$ 0.0180 0.0341 $\mu_{a}$ 0.0936 -0.2108 $-0.4814^{*}$ -0.0046 $\mu_{b}$ $0.5727^{**}$ $-0.6096^{**}$ $0.7117^{***}$ $0.9040^{***}$ $\xi_{h}$ 0.0055 0.0391 -0.0337 -0.0270 $\xi_{a}$ -0.0913 0.1327 -0.0923 -0.0041 $\nu_{h}$ -0.0183 0.0184 0.0608 -0.0183 $\nu_{a}$ -0.0483 0.0745 -0.0953 -0.0253 $\omega$ -0.1496 -0.2233 0.0116 0.0046 $\gamma$ 0.0124 -0.0410 0.0286 -0.0295 $\delta_a$ 0.0690 -0.0647 -0.3869 0.0175 $\theta_h$ -0.0221 0.0308 0.0099 0.0539 $f$ 0.0035 -0.0057 0.0042 0.0170 $\beta_{hh}$ -0.2865 0.3144 -0.0275 -0.0105 $\beta_{hb}$ -0.3649 $0.4837^{*}$ -0.0063 -0.0131 $\beta_{ha}$ -0.2057 0.3168 0.0372 0.0050 $\beta_{bb}$ -0.0686 0.0757 -0.2270 $-0.8988^{***}$ $\beta_{ab}$ -0.0719 0.0684 $-0.5291^{**}$ -0.0245 $\beta_{aa}$ 0.0063 0.0049 -0.2936 0.0053
PRCCs of model's parameters without animals
 Parameters $E_h$ $I_h$ $V$ $I_b$ $\Lambda_{h}$ $0.7853^{**}$ 0.2046 0.1034 0.0202 $\Lambda_b$ -0.3295 $0.4674^*$ 0.3423 -0.0096 $\mu_{h}$ $-0.8726^{**}$ $-0.8067^{**}$ $-0.9046^{**}$ 0.0203 $\mu_{b}$ $0.6098^{**}$ $-0.6607^{**}$ $-0.5215^{**}$ $0.8990^{**}$ $\mu_{v}$ 0.01 0.0066 0.0254 -0.0085 $\xi_{h}$ -0.0047 0.0470 0.0421 -0.0097 $\nu_{h}$ -0.0110 0.0116 -0.0052 0.0244 $\omega$ -0.1750 -0.1661 $0.4079^{*}$ -0.0014 $\gamma$ 0.0404 0.0196 0.1127 -0.0412 $\alpha_h$ -0.0375 -0.0105 0.0071 0.0263 $\alpha_b$ 0.0091 -0.0128 -0.0147 0.0408 $\theta_h$ -0.0182 0.0316 0.0038 -0.0090 $f$ 0.0037 0.0187 $-0.4368^{*}$ -0.0041 $K$ -0.0096 -0.0177 0.0319 -0.0294 $\beta_{hh}$ -0.2646 0.3093 0.2130 0.0209 $\beta_{hb}$ -0.3794 $0.5955^{**}$ $0.4528^*$ 0.0162 $\beta_{hv}$ 0.0055 0.0171 -0.0102 -0.0538 $\beta_{bb}$ -0.0803 0.0556 0.0875 $-0.8952^{***}$ $\beta_{bv}$ -0.0094 0.0178 -0.0178 0.0804
 Parameters $E_h$ $I_h$ $V$ $I_b$ $\Lambda_{h}$ $0.7853^{**}$ 0.2046 0.1034 0.0202 $\Lambda_b$ -0.3295 $0.4674^*$ 0.3423 -0.0096 $\mu_{h}$ $-0.8726^{**}$ $-0.8067^{**}$ $-0.9046^{**}$ 0.0203 $\mu_{b}$ $0.6098^{**}$ $-0.6607^{**}$ $-0.5215^{**}$ $0.8990^{**}$ $\mu_{v}$ 0.01 0.0066 0.0254 -0.0085 $\xi_{h}$ -0.0047 0.0470 0.0421 -0.0097 $\nu_{h}$ -0.0110 0.0116 -0.0052 0.0244 $\omega$ -0.1750 -0.1661 $0.4079^{*}$ -0.0014 $\gamma$ 0.0404 0.0196 0.1127 -0.0412 $\alpha_h$ -0.0375 -0.0105 0.0071 0.0263 $\alpha_b$ 0.0091 -0.0128 -0.0147 0.0408 $\theta_h$ -0.0182 0.0316 0.0038 -0.0090 $f$ 0.0037 0.0187 $-0.4368^{*}$ -0.0041 $K$ -0.0096 -0.0177 0.0319 -0.0294 $\beta_{hh}$ -0.2646 0.3093 0.2130 0.0209 $\beta_{hb}$ -0.3794 $0.5955^{**}$ $0.4528^*$ 0.0162 $\beta_{hv}$ 0.0055 0.0171 -0.0102 -0.0538 $\beta_{bb}$ -0.0803 0.0556 0.0875 $-0.8952^{***}$ $\beta_{bv}$ -0.0094 0.0178 -0.0178 0.0804
Baseline numerical values for the parameters of system (1)
 Parameters Range Values Units Source $\Lambda_{h}$ Variable 100 $indiv.day^{-1}$ N/A $\Lambda_a$ Variable 5 $indiv.day^{-1}$ N/A $\Lambda_b$ Variable 10 $indiv.day^{-1}$ N/A $\mu_{h}$ 0-1 0.33/365 $day^{-1}$ [57] $\mu_{a}$ 0-1 0.4/365 $day^{-1}$ Assumed $\mu_{b}$ 0-1 0.5/365 $day^{-1}$ Assumed $\mu_{v}$ 0-1 0.85/30 $day^{-1}$ Assumed [10,46] $\xi_{h}= 1/\tau_h$ 0-1 1/2.5 $day^{-1}$ [50,57] $\tau_h$ 1-7 2.5 $day$ [50,57] $\xi_{a} =1/\tau_a$ 0-1 1/7 $day^{-1}$ Assumed $\tau_a$ 1-14 7 $day$ Assumed $\nu_{h}$ 1-5 1.2 $day^{-2}$ Assumed $\nu_{a}$ 1-5 1.3 $day^{-2}$ Assumed $\omega$ 1/2-1/21 1/21 $day^{-1}$ [22,50] $\gamma$ 1/7-1/14 1/14 $day^{-1}$ [57] $\delta_a$ 0-1 0.5/365 $day^{-1}$ Assumed $\alpha_h$ 10-100 50 $cells.(ml.day.indiv)^{-1}$ [8] $\alpha_a$ 20-200 100 $cells.(ml.day.indiv)^{-1}$ Assumed $\alpha_b$ 50-400 200 $cells.(ml.day.indiv)^{-1}$ Assumed $\theta_h = 1/r_h$ 1/81-1 1/61 $day^{-1}$ [50] $r_h$ 1-81 61 $day$ [50] $f$ 0.4-0.9 0.70 dimensionless [50,52,57] $K$ $10^6$-$10^9$ $10^6$ $cells.ml^{-1}$ [8] $\beta_{hh}$ 0-1 $day^{-1}$ Variable $\beta_{hb}$ 0-1 $day^{-1}$ Variable $\beta_{hv}$ 0-1 $day^{-1}$ Variable $\beta_{ha}$ 0-1 $day^{-1}$ Variable $\beta_{bb}$ 0-1 $day^{-1}$ Variable $\beta_{ab}$ 0-1 $day^{-1}$ Variable $\beta_{bv}$ 0-1 $day^{-1}$ Variable $\beta_{aa}$ 0-1 $day^{-1}$ Variable $\beta_{av}$ 0-1 $day^{-1}$ Variable
 Parameters Range Values Units Source $\Lambda_{h}$ Variable 100 $indiv.day^{-1}$ N/A $\Lambda_a$ Variable 5 $indiv.day^{-1}$ N/A $\Lambda_b$ Variable 10 $indiv.day^{-1}$ N/A $\mu_{h}$ 0-1 0.33/365 $day^{-1}$ [57] $\mu_{a}$ 0-1 0.4/365 $day^{-1}$ Assumed $\mu_{b}$ 0-1 0.5/365 $day^{-1}$ Assumed $\mu_{v}$ 0-1 0.85/30 $day^{-1}$ Assumed [10,46] $\xi_{h}= 1/\tau_h$ 0-1 1/2.5 $day^{-1}$ [50,57] $\tau_h$ 1-7 2.5 $day$ [50,57] $\xi_{a} =1/\tau_a$ 0-1 1/7 $day^{-1}$ Assumed $\tau_a$ 1-14 7 $day$ Assumed $\nu_{h}$ 1-5 1.2 $day^{-2}$ Assumed $\nu_{a}$ 1-5 1.3 $day^{-2}$ Assumed $\omega$ 1/2-1/21 1/21 $day^{-1}$ [22,50] $\gamma$ 1/7-1/14 1/14 $day^{-1}$ [57] $\delta_a$ 0-1 0.5/365 $day^{-1}$ Assumed $\alpha_h$ 10-100 50 $cells.(ml.day.indiv)^{-1}$ [8] $\alpha_a$ 20-200 100 $cells.(ml.day.indiv)^{-1}$ Assumed $\alpha_b$ 50-400 200 $cells.(ml.day.indiv)^{-1}$ Assumed $\theta_h = 1/r_h$ 1/81-1 1/61 $day^{-1}$ [50] $r_h$ 1-81 61 $day$ [50] $f$ 0.4-0.9 0.70 dimensionless [50,52,57] $K$ $10^6$-$10^9$ $10^6$ $cells.ml^{-1}$ [8] $\beta_{hh}$ 0-1 $day^{-1}$ Variable $\beta_{hb}$ 0-1 $day^{-1}$ Variable $\beta_{hv}$ 0-1 $day^{-1}$ Variable $\beta_{ha}$ 0-1 $day^{-1}$ Variable $\beta_{bb}$ 0-1 $day^{-1}$ Variable $\beta_{ab}$ 0-1 $day^{-1}$ Variable $\beta_{bv}$ 0-1 $day^{-1}$ Variable $\beta_{aa}$ 0-1 $day^{-1}$ Variable $\beta_{av}$ 0-1 $day^{-1}$ Variable
 [1] Olga Vasilyeva, Tamer Oraby, Frithjof Lutscher. Aggregation and environmental transmission in chronic wasting disease. Mathematical Biosciences & Engineering, 2015, 12 (1) : 209-231. doi: 10.3934/mbe.2015.12.209 [2] Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217 [3] W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137 [4] Kokum R. De Silva, Shigetoshi Eda, Suzanne Lenhart. Modeling environmental transmission of MAP infection in dairy cows. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1001-1017. doi: 10.3934/mbe.2017052 [5] Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185 [6] Burcu Adivar, Ebru Selin Selen. Compartmental disease transmission models for smallpox. Conference Publications, 2011, 2011 (Special) : 13-21. doi: 10.3934/proc.2011.2011.13 [7] Hongbin Guo, Michael Yi Li. Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2413-2430. doi: 10.3934/dcdsb.2012.17.2413 [8] W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299 [9] Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51 [10] Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105 [11] Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551 [12] Ping Yan. A frailty model for intervention effectiveness against disease transmission when implemented with unobservable heterogeneity. Mathematical Biosciences & Engineering, 2018, 15 (1) : 275-298. doi: 10.3934/mbe.2018012 [13] Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049 [14] Hiroshi Nishiura. Time variations in the generation time of an infectious disease: Implications for sampling to appropriately quantify transmission potential. Mathematical Biosciences & Engineering, 2010, 7 (4) : 851-869. doi: 10.3934/mbe.2010.7.851 [15] Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 [16] C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 [17] Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 [18] Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147 [19] Ying Ji, Shaojian Qu, Fuxing Chen. Environmental game modeling with uncertainties. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 989-1003. doi: 10.3934/dcdss.2019067 [20] Erin N. Bodine, Connor Cook, Mikayla Shorten. The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. Mathematical Biosciences & Engineering, 2018, 15 (2) : 337-359. doi: 10.3934/mbe.2018015

2018 Impact Factor: 1.313