February  2018, 15(1): 1-20. doi: 10.3934/mbe.2018001

The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally)

1. 

ADAMSS, Universitá degli Studi di Milano, 20133 MILANO, Italy

2. 

Faculty of Mathematics, "Alexandru Ioan Cuza" University of Iași, "Octav Mayer" Institute of Mathematics of the Romanian Academy, Iași 700506, Romania

* Corresponding author: Vincenzo Capasso

Received  January 12, 2016 Accepted  October 30, 2016 Published  May 2017

Fund Project: The first author wishes to dedicate this review to the late Enea Grosso, Professor of Public Health and Hygiene in Bari, who had inspired most of the work presented here on man-environment epidemic systems

A review is presented here of the research carried out, by a group including the authors, on the mathematical analysis of epidemic systems. Particular attention is paid to recent analysis of optimal control problems related to spatially structured epidemics driven by environmental pollution. A relevant problem, related to the possible eradication of the epidemic, is the so called zero stabilization. In a series of papers, necessary conditions, and sufficient conditions of stabilizability have been obtained. It has been proved that it is possible to diminish exponentially the epidemic process, in the whole habitat, just by reducing the concentration of the pollutant in a nonempty and sufficiently large subset of the spatial domain. The stabilizability with a feedback control of harvesting type is related to the magnitude of the principal eigenvalue of a certain operator. The problem of finding the optimal position (by translation) of the support of the feedback stabilizing control is faced, in order to minimize both the infected population and the pollutant at a certain finite time.

Citation: Vincenzo Capasso, Sebastian AniȚa. The interplay between models and public health policies: Regional control for a class of spatially structured epidemics (think globally, act locally). Mathematical Biosciences & Engineering, 2018, 15 (1) : 1-20. doi: 10.3934/mbe.2018001
References:
[1]

H. Abbey, An examination of the Reed-Frost theory of epidemics, Human Biology, 24 (1952), 201-233. Google Scholar

[2]

S. Aniţa and V. Capasso, A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic model, Nonlinear Anal. Real World Appl., 3 (2002), 453-464. doi: 10.1016/S1468-1218(01)00025-6. Google Scholar

[3]

S. Aniţa and V. Capasso, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally), Nonlinear Anal. Real World Appl., 10 (2009), 2026-2035. doi: 10.1016/j.nonrwa.2008.03.009. Google Scholar

[4]

S. Aniţa and V. Capasso, On the stabilization of reaction-diffusion systems modelling a class of man-environment epidemics: A review, Mathematical Methods in Applied Sciences, 33 (2010), 1235-1244. doi: 10.1002/mma.1267. Google Scholar

[5]

S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear Anal. Real World Appl., 13 (2012), 725-735. doi: 10.1016/j.nonrwa.2011.08.012. Google Scholar

[6]

S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling malaria transmission, Discrete and Continuous Dynamical Systems, Series B, 17 (2012), 1673-1684. doi: 10.3934/dcdsb.2012.17.1673. Google Scholar

[7]

S. Aniţa and V. Capasso, Regional control in optimal harvesting of population dynamics, Submitted, 2015.Google Scholar

[8]

V. ArnăutuV. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optimiz., 20 (1989), 297-317. doi: 10.1007/BF01447658. Google Scholar

[9]

D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion, (W. E. Fitzgibbon and A. F. Walker eds. ) Pitman, London, 1977, 1-23.Google Scholar

[10]

P. Babak, Nonlocal initial problems for coupled reaction-diffusion systems and their applications, Nonlinear Anal. RWA, 8 (2007), 980-996. doi: 10.1016/j.nonrwa.2006.05.001. Google Scholar

[11]

N. T. J. Bailey, A simple stochastic epidemic, Biometrika, 37 (1950), 193-202. doi: 10.1093/biomet/37.3-4.193. Google Scholar

[12]

M. S. Bartlett, Some evolutionary stochastic processes, J. Roy. Stat. Soc. Ser. B, 11 (1949), 211-229. Google Scholar

[13]

E. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers and Mathematics in Applications, 12 (1986), 677-694. doi: 10.1016/0898-1221(86)90054-4. Google Scholar

[14]

D. Bernoulli, Réflexions sur les avantages de l'inoculation, Mercure de France, June (1760), 173-190. Google Scholar

[15]

D. J. Bradley, Epidemiological models Theory and reality, in The Population Dynamics of Infectious Diseases, (R. M. Anderson Ed. ) Chapman and Hall, London-New York, 2008, 320-333. doi: 10.1007/978-1-4899-2901-3_10. Google Scholar

[16]

F. Brauer, Some infectious disease models with population dynamics and general contact rates, Differential and Integral Equations, 3 (1990), 827-836. Google Scholar

[17]

J. Brownlee, The mathematical theory of random migration and epidemic distribution, Proc. Roy. Soc. Edinburgh, 31 (1912), 262-289. doi: 10.1017/S0370164600025116. Google Scholar

[18]

S. BusenbergK. L. Cooke and M. Iannelli, Endemic thresholds and stability in a class of age-structured epidemics, SIAM J. Appl. Math., 48 (1988), 1379-1395. doi: 10.1137/0148085. Google Scholar

[19]

V. Capasso, Mathematical Structures of Epidemic Systems (corrected 2nd printing), Lecture Notes Biomath. , vol. 97, Springer-Verlag, Heidelberg, 2008. Google Scholar

[20]

V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978), 274-284. doi: 10.1137/0135022. Google Scholar

[21]

V. Capasso, Asymptotic stability for an integro-differential reaction-diffusion system, J. Math. Anal. Appl., 103 (1984), 575-588. doi: 10.1016/0022-247X(84)90147-1. Google Scholar

[22] V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Theory, Models, and Applications to Finance, Biology and Medicine, Third Edition, Birkhäuser, New York, 2015. doi: 10.1007/978-1-4939-2757-9. Google Scholar
[23]

V. Capasso and B. Forte, Model building as an inverse problem in Biomathematics, in Frontiers in Mathematical Biology, (S. A. Levin Ed. ) Lecture Notes in Biomathematics, SpringerVerlag, Heidelberg, 100 (1994), 600-608. doi: 10.1007/978-3-642-50124-1_35. Google Scholar

[24]

V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quarterly Appl. Math., 46 (1988), 431-450. doi: 10.1090/qam/963580. Google Scholar

[25]

V. Capasso and L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981), 173-184. doi: 10.1007/BF00275212. Google Scholar

[26]

V. Capasso and L. Maddalena, Saddle point behaviour for a reaction-diffusion system: Application to a class of epidemic models, Math. Comput. Simulation, 24 (1982), 540-547. doi: 10.1016/0378-4754(82)90656-5. Google Scholar

[27]

V. Capasso and L. Maddalena, Periodic solutions for a reaction-diffusion system modelling the spread of a class of epidemics, SIAM J. Appl. Math., 43 (1983), 417-427. doi: 10.1137/0143027. Google Scholar

[28]

V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue d'Epidemiologie et de la Sante' Publique, 27 (1979), 121-132; Errata corrige, 28 (1980), p390.Google Scholar

[29]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61. doi: 10.1016/0025-5564(78)90006-8. Google Scholar

[30]

V. Capasso and H. R. Thieme, A threshold theorem for a reaction-diffusion epidemic system, in Differential Equations and Applications (R. Aftabizadeh, ed. ), Ohio Univ. Press, Athens, OH, 1989,128-133.Google Scholar

[31]

V. Capasso and R. E. Wilson, Analysis of a reaction-diffusion system modelling man-environment-man epidemics, SIAM J. Appl. Math., 57 (1997), 327-346. doi: 10.1137/S0036139995284681. Google Scholar

[32]

C. Castillo-ChavezK. L. CookeW. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1: Single population models, J. Math. Biol., 27 (1989), 373-398. doi: 10.1007/BF00290636. Google Scholar

[33]

C. Castillo-Chavez, K. L. Cooke, W. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 2: Multiple group models, in Mathematical and Statistical Approaches to AIDS Epidemiology, (C. Castillo-Chavez ed. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 83 (1989), 200-217. doi: 10.1007/978-3-642-93454-4_9. Google Scholar

[34]

C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1 (2001), 1-14. Google Scholar

[35]

K. Dietz, Introduction to McKendrick (1926) Applications of mathematics to medical problems, in Breakthroughs in Statistics Volume Ⅲ, (S. Kotz and N. L. Johnson eds) SpringerVerlag, Heidelberg, 1997, 17-26.Google Scholar

[36]

K. Dietz, Mathematization in sciences epidemics: The fitting of the first dynamic models to data, J. Contemp. Math. Anal., 44 (2009), 97-104. doi: 10.3103/S1068362309020034. Google Scholar

[37]

A. d'OnofrioP. Manfredi and E. Salinelli, Vaccination behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theoretical Population Biology, 71 (2007), 301-317. Google Scholar

[38]

J. L. Doob, Markoff chains-denumerable case, Trans. Am. Math. Society, 58 (1945), 455-473. doi: 10.2307/1990339. Google Scholar

[39]

En'ko, On the course of epidemics of some infectious diseases, (Translation from Russian by K. Dietz) Int. J. Epidemiology, 18 (1989), 749-755.Google Scholar

[40] S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986. doi: 10.1002/9780470316658. Google Scholar
[41]

W. Farr, Progress of epidemics, Second Report of the Registrar General, (1840), 91-98. Google Scholar

[42]

W. H. Frost, Some conceptions of epidemics in general, Am. J. Epidemiology, 103 (1976), 141-151. Google Scholar

[43]

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comp. Physics, 22 (1976), 403-434. doi: 10.1016/0021-9991(76)90041-3. Google Scholar

[44]

B. S. Goh, Global stability in a class of predator-prey models, Bull. Math. Biol., 40 (1978), 525-533. doi: 10.1007/BF02460776. Google Scholar

[45]

W. H. Hamer, Epidemic disease in England, Lancet, 1 (1906), 733-739. Google Scholar

[46] A. Henrot and M. Pierre, Variation et Optimisation de Formes. Une Analyse Géométrique, Springer, Berlin, 2005. doi: 10.1007/3-540-37689-5. Google Scholar
[47]

O. A. van Herwaarden and J. Grasman, Stochastic epidemics: Major outbreaks and the duration of the endemic period, J. Math. Biol., 35 (1997), 793-813. doi: 10.1007/s002850050077. Google Scholar

[48]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287. doi: 10.1007/BF00160539. Google Scholar

[49] F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics, SIAM, Philadelphia, 1975. Google Scholar
[50]

D. G. Kendall, Mathematical models of the spread of infection, in Mathematics and Computer Science in Biology and Medicine, H. M. S. O. , London, 1965,213-225.Google Scholar

[51]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London, Ser. A, 115 (1927), 700-721. Google Scholar

[52] M. A. Krasnoselkii, Positive Solutions of Operator Equations, Nordhooff, Groningen, 1964. Google Scholar
[53]

M. A. Krasnoselkii, Translation Along Trajectories of Differential Equations AMS, Providence, R. I. , 1968.Google Scholar

[54] J. L. Lions, Controlabilité Exacte, Stabilisation et Perturbation de Systémes Distribués, Masson, Paris, 1988. Google Scholar
[55]

W. M. LiuH. M. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380. doi: 10.1007/BF00277162. Google Scholar

[56]

W. M. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rate upon the behaviour of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204. doi: 10.1007/BF00276956. Google Scholar

[57]

A. J. Lotka, Martini's equations for the epidemiology of immunizing diseases, Nature, 111 (1923), 633-634. Google Scholar

[58]

G. Macdonald, The analysis of malaria parasite rates in infants, Tropical Disease Bull., 47 (1950), 915-938. Google Scholar

[59] E. Martini, Berechnungen und Beobachtungen zur Epidemiologie und Bekämpfung der Malaria, Gente, Hamburg, 1921. Google Scholar
[60]

I. Näsell and W. M. Hirsch, The transmission dynamics of schistosomiasis, Comm. Pure Appl. Math., 26 (1973), 395-453. doi: 10.1002/cpa.3160260402. Google Scholar

[61]

A. Pugliese, An SEI epidemic model with varying population size, in Differential Equation Models in Biology, Epidemiology and Ecology, (S. Busenberg and M. Martelli eds. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 92 (1991), 121-138. doi: 10.1007/978-3-642-45692-3_9. Google Scholar

[62] M. Puma, Elementi per una Teoria Matematica del Contagio, Editoriale Aeronautica, Rome, 1939. Google Scholar
[63] R. Ross, The Prevention of Malaria, London, Murray, 1911. Google Scholar
[64]

R. E. Serfling, Historical review of epidemic theory, Human Biology, 24 (1952), 145-165. Google Scholar

[65]

N. C. Severo, Generalizations of some stochastic epidemic models, Math. Biosci., 4 (1969), 395-402. doi: 10.1016/0025-5564(69)90019-4. Google Scholar

[66]

H. E. Soper, The interpretation of periodicity in disease prevalence, J. Roy. Stat. Soc., 92 (1929), 34-73. doi: 10.2307/2341437. Google Scholar

[67] W. Y. Tan, Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems, World Scientific, Singapore, 2002. doi: 10.1142/9789812777966. Google Scholar
[68] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, N. J., 2003. Google Scholar
[69]

E. B. Wilson and J. Worcester, The law of mass action in epidemiology, Proc. Nat. Acad. Sci., 31 (1945), 24-34. doi: 10.1073/pnas.31.1.24. Google Scholar

show all references

References:
[1]

H. Abbey, An examination of the Reed-Frost theory of epidemics, Human Biology, 24 (1952), 201-233. Google Scholar

[2]

S. Aniţa and V. Capasso, A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic model, Nonlinear Anal. Real World Appl., 3 (2002), 453-464. doi: 10.1016/S1468-1218(01)00025-6. Google Scholar

[3]

S. Aniţa and V. Capasso, A stabilization strategy for a reaction-diffusion system modelling a class of spatially structured epidemic systems (think globally, act locally), Nonlinear Anal. Real World Appl., 10 (2009), 2026-2035. doi: 10.1016/j.nonrwa.2008.03.009. Google Scholar

[4]

S. Aniţa and V. Capasso, On the stabilization of reaction-diffusion systems modelling a class of man-environment epidemics: A review, Mathematical Methods in Applied Sciences, 33 (2010), 1235-1244. doi: 10.1002/mma.1267. Google Scholar

[5]

S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear Anal. Real World Appl., 13 (2012), 725-735. doi: 10.1016/j.nonrwa.2011.08.012. Google Scholar

[6]

S. Aniţa and V. Capasso, Stabilization of a reaction-diffusion system modelling malaria transmission, Discrete and Continuous Dynamical Systems, Series B, 17 (2012), 1673-1684. doi: 10.3934/dcdsb.2012.17.1673. Google Scholar

[7]

S. Aniţa and V. Capasso, Regional control in optimal harvesting of population dynamics, Submitted, 2015.Google Scholar

[8]

V. ArnăutuV. Barbu and V. Capasso, Controlling the spread of a class of epidemics, Appl. Math. Optimiz., 20 (1989), 297-317. doi: 10.1007/BF01447658. Google Scholar

[9]

D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion, (W. E. Fitzgibbon and A. F. Walker eds. ) Pitman, London, 1977, 1-23.Google Scholar

[10]

P. Babak, Nonlocal initial problems for coupled reaction-diffusion systems and their applications, Nonlinear Anal. RWA, 8 (2007), 980-996. doi: 10.1016/j.nonrwa.2006.05.001. Google Scholar

[11]

N. T. J. Bailey, A simple stochastic epidemic, Biometrika, 37 (1950), 193-202. doi: 10.1093/biomet/37.3-4.193. Google Scholar

[12]

M. S. Bartlett, Some evolutionary stochastic processes, J. Roy. Stat. Soc. Ser. B, 11 (1949), 211-229. Google Scholar

[13]

E. Beretta and V. Capasso, On the general structure of epidemic systems. Global asymptotic stability, Computers and Mathematics in Applications, 12 (1986), 677-694. doi: 10.1016/0898-1221(86)90054-4. Google Scholar

[14]

D. Bernoulli, Réflexions sur les avantages de l'inoculation, Mercure de France, June (1760), 173-190. Google Scholar

[15]

D. J. Bradley, Epidemiological models Theory and reality, in The Population Dynamics of Infectious Diseases, (R. M. Anderson Ed. ) Chapman and Hall, London-New York, 2008, 320-333. doi: 10.1007/978-1-4899-2901-3_10. Google Scholar

[16]

F. Brauer, Some infectious disease models with population dynamics and general contact rates, Differential and Integral Equations, 3 (1990), 827-836. Google Scholar

[17]

J. Brownlee, The mathematical theory of random migration and epidemic distribution, Proc. Roy. Soc. Edinburgh, 31 (1912), 262-289. doi: 10.1017/S0370164600025116. Google Scholar

[18]

S. BusenbergK. L. Cooke and M. Iannelli, Endemic thresholds and stability in a class of age-structured epidemics, SIAM J. Appl. Math., 48 (1988), 1379-1395. doi: 10.1137/0148085. Google Scholar

[19]

V. Capasso, Mathematical Structures of Epidemic Systems (corrected 2nd printing), Lecture Notes Biomath. , vol. 97, Springer-Verlag, Heidelberg, 2008. Google Scholar

[20]

V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978), 274-284. doi: 10.1137/0135022. Google Scholar

[21]

V. Capasso, Asymptotic stability for an integro-differential reaction-diffusion system, J. Math. Anal. Appl., 103 (1984), 575-588. doi: 10.1016/0022-247X(84)90147-1. Google Scholar

[22] V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Theory, Models, and Applications to Finance, Biology and Medicine, Third Edition, Birkhäuser, New York, 2015. doi: 10.1007/978-1-4939-2757-9. Google Scholar
[23]

V. Capasso and B. Forte, Model building as an inverse problem in Biomathematics, in Frontiers in Mathematical Biology, (S. A. Levin Ed. ) Lecture Notes in Biomathematics, SpringerVerlag, Heidelberg, 100 (1994), 600-608. doi: 10.1007/978-3-642-50124-1_35. Google Scholar

[24]

V. Capasso and K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Quarterly Appl. Math., 46 (1988), 431-450. doi: 10.1090/qam/963580. Google Scholar

[25]

V. Capasso and L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981), 173-184. doi: 10.1007/BF00275212. Google Scholar

[26]

V. Capasso and L. Maddalena, Saddle point behaviour for a reaction-diffusion system: Application to a class of epidemic models, Math. Comput. Simulation, 24 (1982), 540-547. doi: 10.1016/0378-4754(82)90656-5. Google Scholar

[27]

V. Capasso and L. Maddalena, Periodic solutions for a reaction-diffusion system modelling the spread of a class of epidemics, SIAM J. Appl. Math., 43 (1983), 417-427. doi: 10.1137/0143027. Google Scholar

[28]

V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Revue d'Epidemiologie et de la Sante' Publique, 27 (1979), 121-132; Errata corrige, 28 (1980), p390.Google Scholar

[29]

V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61. doi: 10.1016/0025-5564(78)90006-8. Google Scholar

[30]

V. Capasso and H. R. Thieme, A threshold theorem for a reaction-diffusion epidemic system, in Differential Equations and Applications (R. Aftabizadeh, ed. ), Ohio Univ. Press, Athens, OH, 1989,128-133.Google Scholar

[31]

V. Capasso and R. E. Wilson, Analysis of a reaction-diffusion system modelling man-environment-man epidemics, SIAM J. Appl. Math., 57 (1997), 327-346. doi: 10.1137/S0036139995284681. Google Scholar

[32]

C. Castillo-ChavezK. L. CookeW. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1: Single population models, J. Math. Biol., 27 (1989), 373-398. doi: 10.1007/BF00290636. Google Scholar

[33]

C. Castillo-Chavez, K. L. Cooke, W. Huang and S. A. Levin, On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 2: Multiple group models, in Mathematical and Statistical Approaches to AIDS Epidemiology, (C. Castillo-Chavez ed. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 83 (1989), 200-217. doi: 10.1007/978-3-642-93454-4_9. Google Scholar

[34]

C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1 (2001), 1-14. Google Scholar

[35]

K. Dietz, Introduction to McKendrick (1926) Applications of mathematics to medical problems, in Breakthroughs in Statistics Volume Ⅲ, (S. Kotz and N. L. Johnson eds) SpringerVerlag, Heidelberg, 1997, 17-26.Google Scholar

[36]

K. Dietz, Mathematization in sciences epidemics: The fitting of the first dynamic models to data, J. Contemp. Math. Anal., 44 (2009), 97-104. doi: 10.3103/S1068362309020034. Google Scholar

[37]

A. d'OnofrioP. Manfredi and E. Salinelli, Vaccination behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theoretical Population Biology, 71 (2007), 301-317. Google Scholar

[38]

J. L. Doob, Markoff chains-denumerable case, Trans. Am. Math. Society, 58 (1945), 455-473. doi: 10.2307/1990339. Google Scholar

[39]

En'ko, On the course of epidemics of some infectious diseases, (Translation from Russian by K. Dietz) Int. J. Epidemiology, 18 (1989), 749-755.Google Scholar

[40] S. N. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986. doi: 10.1002/9780470316658. Google Scholar
[41]

W. Farr, Progress of epidemics, Second Report of the Registrar General, (1840), 91-98. Google Scholar

[42]

W. H. Frost, Some conceptions of epidemics in general, Am. J. Epidemiology, 103 (1976), 141-151. Google Scholar

[43]

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comp. Physics, 22 (1976), 403-434. doi: 10.1016/0021-9991(76)90041-3. Google Scholar

[44]

B. S. Goh, Global stability in a class of predator-prey models, Bull. Math. Biol., 40 (1978), 525-533. doi: 10.1007/BF02460776. Google Scholar

[45]

W. H. Hamer, Epidemic disease in England, Lancet, 1 (1906), 733-739. Google Scholar

[46] A. Henrot and M. Pierre, Variation et Optimisation de Formes. Une Analyse Géométrique, Springer, Berlin, 2005. doi: 10.1007/3-540-37689-5. Google Scholar
[47]

O. A. van Herwaarden and J. Grasman, Stochastic epidemics: Major outbreaks and the duration of the endemic period, J. Math. Biol., 35 (1997), 793-813. doi: 10.1007/s002850050077. Google Scholar

[48]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287. doi: 10.1007/BF00160539. Google Scholar

[49] F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epidemics, SIAM, Philadelphia, 1975. Google Scholar
[50]

D. G. Kendall, Mathematical models of the spread of infection, in Mathematics and Computer Science in Biology and Medicine, H. M. S. O. , London, 1965,213-225.Google Scholar

[51]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London, Ser. A, 115 (1927), 700-721. Google Scholar

[52] M. A. Krasnoselkii, Positive Solutions of Operator Equations, Nordhooff, Groningen, 1964. Google Scholar
[53]

M. A. Krasnoselkii, Translation Along Trajectories of Differential Equations AMS, Providence, R. I. , 1968.Google Scholar

[54] J. L. Lions, Controlabilité Exacte, Stabilisation et Perturbation de Systémes Distribués, Masson, Paris, 1988. Google Scholar
[55]

W. M. LiuH. M. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380. doi: 10.1007/BF00277162. Google Scholar

[56]

W. M. LiuS. A. Levin and Y. Iwasa, Influence of nonlinear incidence rate upon the behaviour of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204. doi: 10.1007/BF00276956. Google Scholar

[57]

A. J. Lotka, Martini's equations for the epidemiology of immunizing diseases, Nature, 111 (1923), 633-634. Google Scholar

[58]

G. Macdonald, The analysis of malaria parasite rates in infants, Tropical Disease Bull., 47 (1950), 915-938. Google Scholar

[59] E. Martini, Berechnungen und Beobachtungen zur Epidemiologie und Bekämpfung der Malaria, Gente, Hamburg, 1921. Google Scholar
[60]

I. Näsell and W. M. Hirsch, The transmission dynamics of schistosomiasis, Comm. Pure Appl. Math., 26 (1973), 395-453. doi: 10.1002/cpa.3160260402. Google Scholar

[61]

A. Pugliese, An SEI epidemic model with varying population size, in Differential Equation Models in Biology, Epidemiology and Ecology, (S. Busenberg and M. Martelli eds. ) Lecture Notes in Biomathematics, Springer-Verlag, Heidelberg, 92 (1991), 121-138. doi: 10.1007/978-3-642-45692-3_9. Google Scholar

[62] M. Puma, Elementi per una Teoria Matematica del Contagio, Editoriale Aeronautica, Rome, 1939. Google Scholar
[63] R. Ross, The Prevention of Malaria, London, Murray, 1911. Google Scholar
[64]

R. E. Serfling, Historical review of epidemic theory, Human Biology, 24 (1952), 145-165. Google Scholar

[65]

N. C. Severo, Generalizations of some stochastic epidemic models, Math. Biosci., 4 (1969), 395-402. doi: 10.1016/0025-5564(69)90019-4. Google Scholar

[66]

H. E. Soper, The interpretation of periodicity in disease prevalence, J. Roy. Stat. Soc., 92 (1929), 34-73. doi: 10.2307/2341437. Google Scholar

[67] W. Y. Tan, Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems, World Scientific, Singapore, 2002. doi: 10.1142/9789812777966. Google Scholar
[68] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, N. J., 2003. Google Scholar
[69]

E. B. Wilson and J. Worcester, The law of mass action in epidemiology, Proc. Nat. Acad. Sci., 31 (1945), 24-34. doi: 10.1073/pnas.31.1.24. Google Scholar

Figure 1.  The transfer diagram for an SEIR compartmental model including the susceptible class S, the exposed, but not yet infective, class E, the infective class I, and the removed class R
Figure 2.  Nonlinear forces of infection [29]
Figure 3.  Think Globally, Act Locally
[1]

Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579

[2]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[3]

Heather Finotti, Suzanne Lenhart, Tuoc Van Phan. Optimal control of advective direction in reaction-diffusion population models. Evolution Equations & Control Theory, 2012, 1 (1) : 81-107. doi: 10.3934/eect.2012.1.81

[4]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[5]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[6]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[7]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[8]

V. Rehbock, K.L. Teo, L.S. Jennings. Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 223-236. doi: 10.3934/dcds.1995.1.223

[9]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[10]

Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021

[11]

Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Addendum to "Optimal control of multiscale systems using reduced-order models". Journal of Computational Dynamics, 2017, 4 (1&2) : 167-167. doi: 10.3934/jcd.2017006

[12]

Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Optimal control of multiscale systems using reduced-order models. Journal of Computational Dynamics, 2014, 1 (2) : 279-306. doi: 10.3934/jcd.2014.1.279

[13]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019173

[14]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[15]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[16]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[17]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[18]

Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control & Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004

[19]

Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks & Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353

[20]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (38)
  • HTML views (147)
  • Cited by (0)

Other articles
by authors

[Back to Top]