October  2017, 14(5&6): 1565-1583. doi: 10.3934/mbe.2017081

The risk index for an SIR epidemic model and spatial spreading of the infectious disease

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

Department of Mathematics, Anhui Normal University, Wuhu 241000, China

* Corresponding author: zglin68@hotmail.com (Z. G. Lin)

Received  May 05, 2016 Accepted  September 19, 2016 Published  May 2017

Fund Project: The first author is supported by Graduate Research and Innovation Projects of Jiangsu Province KYZZ16−0489, and the third author is supported by NSFC of China 11371311 and 11626019

In this paper, a reaction-diffusion-advection SIR model for the transmission of the infectious disease is proposed and analyzed. The free boundaries are introduced to describe the spreading fronts of the disease. By exhibiting the basic reproduction number $R_0^{DA}$ for an associated model with Dirichlet boundary condition, we introduce the risk index $R^F_0(t)$ for the free boundary problem, which depends on the advection coefficient and time. Sufficient conditions for the disease to prevail or not are obtained. Our results suggest that the disease must spread if $R^F_0(t_0)≥q 1$ for some $t_0$ and the disease is vanishing if $R^F_0(∞)<1$, while if $R^F_0(0)<1$, the spreading or vanishing of the disease depends on the initial state of infected individuals as well as the expanding capability of the free boundary. We also illustrate the impacts of the expanding capability on the spreading fronts via the numerical simulations.

Citation: Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081
References:
[1]

I. AhnS. Baek and Z. G. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Modelling, 40 (2016), 7082-7101. doi: 10.1016/j.apm.2016.02.038. Google Scholar

[2]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1. Google Scholar

[3]

A. L. Amadori and J. L. Vázquez, Singular free boundary problem from image processing, Math. Model. Methods. Appl. Sci., 15 (2005), 689-715. doi: 10.1142/S0218202505000509. Google Scholar

[4]

A. Bezuglyy and Y. Lou, Reaction-diffusion models with large advection coefficients, Appl. Anal., 89 (2010), 983-1004. doi: 10.1080/00036810903479723. Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd, 2003. doi: 10.1002/0470871296. Google Scholar

[6]

Center for Disease Control and Prevention (CDC), Update: West Nile-like viral encephalitis-New York, 1999, Morb. Mortal Wkly. Rep., 48 (1999), 890-892. Google Scholar

[7]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800. doi: 10.1137/S0036141099351693. Google Scholar

[8]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089. Google Scholar

[9]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132. doi: 10.3934/dcdsb.2014.19.3105. Google Scholar

[10]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724. doi: 10.4171/JEMS/568. Google Scholar

[11]

A. M. Elaiw and N. H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal. Real World Appl., 26 (2015), 161-190. doi: 10.1016/j.nonrwa.2015.05.007. Google Scholar

[12]

X. M. FengS. G. RuanZ. D. Teng and K. Wang, Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China, Math. Biosci., 266 (2015), 52-64. doi: 10.1016/j.mbs.2015.05.005. Google Scholar

[13]

D. Z. Gao, Y. J. Lou and D. H. He, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis, Scientific Reports 6, Article number: 6 (2016), 28070. doi: 10.1038/srep28070. Google Scholar

[14]

J. GeK. I. KimZ. G. Lin and H. P. Zhu, A SIS reaction-diffusion model in a low-risk and high-risk domain, J. Differential Equation, 259 (2015), 5486-5509. doi: 10.1016/j.jde.2015.06.035. Google Scholar

[15]

H. GuB. D. Lou and M. L. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768. doi: 10.1016/j.jfa.2015.07.002. Google Scholar

[16]

Globalization and disease Available from: https://en.wikipedia.org/wiki/Globalization_and_disease.Google Scholar

[17]

West African Ebola virus epidemic Available from: https://en.wikipedia.org/wiki/West_African_Ebola_virus_epidemic.Google Scholar

[18]

Epidemic situation of dengue fever in Guangdong, 2014 (Chinese) Available from: http://www.rdsj5.com/guonei/1369.html.Google Scholar

[19]

S. IwamiY. Takeuchi and X. N. Liu, Avian-human influenza epidemic model, Math. Biosci., 207 (2007), 1-25. doi: 10.1016/j.mbs.2006.08.001. Google Scholar

[20]

W. O. Kermack and A. G. Mckendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc., A115 (1927), 700-721. Google Scholar

[21]

W. O. Kermack and A. G. Mckendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc., A138 (1932), 55-83. Google Scholar

[22]

K. I. KimZ. G. Lin and L. Zhang, Avian-human influenza epidemic model with diffusion, Nonlinear Anal. Real World Appl., 11 (2010), 313-322. doi: 10.1016/j.nonrwa.2008.11.015. Google Scholar

[23]

K. I. KimZ. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary, Nonlinear Anal. Real World Appl., 14 (2013), 1992-2001. doi: 10.1016/j.nonrwa.2013.02.003. Google Scholar

[24]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc, Providence, RI, 1968. Google Scholar

[25]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166. doi: 10.1016/j.jde.2014.03.015. Google Scholar

[26]

C. Z. LiJ. Q. LiZ. E. Ma and H. P. Zhu, Canard phenomenon for an SIS epidemic model with nonlinear incidence, J. Math. Anal. Appl., 420 (2014), 987-1004. doi: 10.1016/j.jmaa.2014.06.035. Google Scholar

[27]

M. Li and Z. G. Lin, The spreading fronts in a mutualistic model with advection, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2089-2105. doi: 10.3934/dcdsb.2015.20.2089. Google Scholar

[28]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892. doi: 10.1088/0951-7715/20/8/004. Google Scholar

[29]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., (2017), 1–29, http://link.springer.com/article/10.1007/s00285-017-1124-7?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst. doi: 10.1007/s00285-017-1124-7. Google Scholar

[30]

N. A. Maidana and H. Yang, Spatial spreading of West Nile Virus described by traveling waves, J. Theoret. Biol., 258 (2009), 403-417. doi: 10.1016/j.jtbi.2008.12.032. Google Scholar

[31]

W. Merz and P. Rybka, A free boundary problem describing reaction-diffusion problems in chemical vapor infiltration of pyrolytic carbon, J. Math. Anal. Appl., 292 (2004), 571-588. doi: 10.1016/j.jmaa.2003.12.025. Google Scholar

[32]

L. I. Rubinstein, The Stefan Problem, Amer. Math. Soc, Providence, RI, 1971. Google Scholar

[33]

C. Shekhar, Deadly dengue: New vaccines promise to tackle this escalating global menace, Chem. Biol., 14 (2007), 871-872. doi: 10.1016/j.chembiol.2007.08.004. Google Scholar

[34]

S. Side and S. M. Noorani, A SIR model for spread of Dengue fever disease (simulation for South Sulawesi, Indonesia and Selangor, Malaysia), World Journal of Modelling and Simulation, 9 (2013), 96-105. Google Scholar

[35]

Y. S. Tao and M. J. Chen, An elliptic-hyperbolic free boundary problem modelling cancer therapy, Nonlinearity, 19 (2006), 419-440. doi: 10.1088/0951-7715/19/2/010. Google Scholar

[36]

J. Wang and J. F. Cao, The spreading frontiers in partially degenerate reaction-diffusion systems, Nonlinear Anal., 122 (2015), 215-238. doi: 10.1016/j.na.2015.04.003. Google Scholar

[37]

J. Y. WangY. N. Xiao and Z. H. Peng, Modelling seasonal HFMD infections with the effects of contaminated environments in mainland China, Appl. Math. Comput., 274 (2016), 615-627. doi: 10.1016/j.amc.2015.11.035. Google Scholar

[38]

M. X. Wang and J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672. Google Scholar

[39]

World Health Organization, World Health Statistics 2006-2012.Google Scholar

[40]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954. doi: 10.1016/j.jde.2013.12.008. Google Scholar

show all references

References:
[1]

I. AhnS. Baek and Z. G. Lin, The spreading fronts of an infective environment in a man-environment-man epidemic model, Appl. Math. Modelling, 40 (2016), 7082-7101. doi: 10.1016/j.apm.2016.02.038. Google Scholar

[2]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1. Google Scholar

[3]

A. L. Amadori and J. L. Vázquez, Singular free boundary problem from image processing, Math. Model. Methods. Appl. Sci., 15 (2005), 689-715. doi: 10.1142/S0218202505000509. Google Scholar

[4]

A. Bezuglyy and Y. Lou, Reaction-diffusion models with large advection coefficients, Appl. Anal., 89 (2010), 983-1004. doi: 10.1080/00036810903479723. Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd, 2003. doi: 10.1002/0470871296. Google Scholar

[6]

Center for Disease Control and Prevention (CDC), Update: West Nile-like viral encephalitis-New York, 1999, Morb. Mortal Wkly. Rep., 48 (1999), 890-892. Google Scholar

[7]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800. doi: 10.1137/S0036141099351693. Google Scholar

[8]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089. Google Scholar

[9]

Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132. doi: 10.3934/dcdsb.2014.19.3105. Google Scholar

[10]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724. doi: 10.4171/JEMS/568. Google Scholar

[11]

A. M. Elaiw and N. H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal. Real World Appl., 26 (2015), 161-190. doi: 10.1016/j.nonrwa.2015.05.007. Google Scholar

[12]

X. M. FengS. G. RuanZ. D. Teng and K. Wang, Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China, Math. Biosci., 266 (2015), 52-64. doi: 10.1016/j.mbs.2015.05.005. Google Scholar

[13]

D. Z. Gao, Y. J. Lou and D. H. He, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis, Scientific Reports 6, Article number: 6 (2016), 28070. doi: 10.1038/srep28070. Google Scholar

[14]

J. GeK. I. KimZ. G. Lin and H. P. Zhu, A SIS reaction-diffusion model in a low-risk and high-risk domain, J. Differential Equation, 259 (2015), 5486-5509. doi: 10.1016/j.jde.2015.06.035. Google Scholar

[15]

H. GuB. D. Lou and M. L. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768. doi: 10.1016/j.jfa.2015.07.002. Google Scholar

[16]

Globalization and disease Available from: https://en.wikipedia.org/wiki/Globalization_and_disease.Google Scholar

[17]

West African Ebola virus epidemic Available from: https://en.wikipedia.org/wiki/West_African_Ebola_virus_epidemic.Google Scholar

[18]

Epidemic situation of dengue fever in Guangdong, 2014 (Chinese) Available from: http://www.rdsj5.com/guonei/1369.html.Google Scholar

[19]

S. IwamiY. Takeuchi and X. N. Liu, Avian-human influenza epidemic model, Math. Biosci., 207 (2007), 1-25. doi: 10.1016/j.mbs.2006.08.001. Google Scholar

[20]

W. O. Kermack and A. G. Mckendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc., A115 (1927), 700-721. Google Scholar

[21]

W. O. Kermack and A. G. Mckendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc., A138 (1932), 55-83. Google Scholar

[22]

K. I. KimZ. G. Lin and L. Zhang, Avian-human influenza epidemic model with diffusion, Nonlinear Anal. Real World Appl., 11 (2010), 313-322. doi: 10.1016/j.nonrwa.2008.11.015. Google Scholar

[23]

K. I. KimZ. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary, Nonlinear Anal. Real World Appl., 14 (2013), 1992-2001. doi: 10.1016/j.nonrwa.2013.02.003. Google Scholar

[24]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc, Providence, RI, 1968. Google Scholar

[25]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166. doi: 10.1016/j.jde.2014.03.015. Google Scholar

[26]

C. Z. LiJ. Q. LiZ. E. Ma and H. P. Zhu, Canard phenomenon for an SIS epidemic model with nonlinear incidence, J. Math. Anal. Appl., 420 (2014), 987-1004. doi: 10.1016/j.jmaa.2014.06.035. Google Scholar

[27]

M. Li and Z. G. Lin, The spreading fronts in a mutualistic model with advection, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2089-2105. doi: 10.3934/dcdsb.2015.20.2089. Google Scholar

[28]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892. doi: 10.1088/0951-7715/20/8/004. Google Scholar

[29]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., (2017), 1–29, http://link.springer.com/article/10.1007/s00285-017-1124-7?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst. doi: 10.1007/s00285-017-1124-7. Google Scholar

[30]

N. A. Maidana and H. Yang, Spatial spreading of West Nile Virus described by traveling waves, J. Theoret. Biol., 258 (2009), 403-417. doi: 10.1016/j.jtbi.2008.12.032. Google Scholar

[31]

W. Merz and P. Rybka, A free boundary problem describing reaction-diffusion problems in chemical vapor infiltration of pyrolytic carbon, J. Math. Anal. Appl., 292 (2004), 571-588. doi: 10.1016/j.jmaa.2003.12.025. Google Scholar

[32]

L. I. Rubinstein, The Stefan Problem, Amer. Math. Soc, Providence, RI, 1971. Google Scholar

[33]

C. Shekhar, Deadly dengue: New vaccines promise to tackle this escalating global menace, Chem. Biol., 14 (2007), 871-872. doi: 10.1016/j.chembiol.2007.08.004. Google Scholar

[34]

S. Side and S. M. Noorani, A SIR model for spread of Dengue fever disease (simulation for South Sulawesi, Indonesia and Selangor, Malaysia), World Journal of Modelling and Simulation, 9 (2013), 96-105. Google Scholar

[35]

Y. S. Tao and M. J. Chen, An elliptic-hyperbolic free boundary problem modelling cancer therapy, Nonlinearity, 19 (2006), 419-440. doi: 10.1088/0951-7715/19/2/010. Google Scholar

[36]

J. Wang and J. F. Cao, The spreading frontiers in partially degenerate reaction-diffusion systems, Nonlinear Anal., 122 (2015), 215-238. doi: 10.1016/j.na.2015.04.003. Google Scholar

[37]

J. Y. WangY. N. Xiao and Z. H. Peng, Modelling seasonal HFMD infections with the effects of contaminated environments in mainland China, Appl. Math. Comput., 274 (2016), 615-627. doi: 10.1016/j.amc.2015.11.035. Google Scholar

[38]

M. X. Wang and J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672. Google Scholar

[39]

World Health Organization, World Health Statistics 2006-2012.Google Scholar

[40]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954. doi: 10.1016/j.jde.2013.12.008. Google Scholar

Figure 1.  $\mu=20$. The left graph shows that the solution $I$ decays to zero quickly. The right graph is the corresponding contour graph, which shows the free boundaries expand slowly and will be limited in a long run
Figure 2.  $\mu=40$. The solution $I$ in the left graph keeps positive and stabilizes to an equilibrium. The right contour graph shows that the free boundaries expand fast
[1]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[2]

Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control & Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020

[3]

Yuan Wu, Jin Liang, Bei Hu. A free boundary problem for defaultable corporate bond with credit rating migration risk and its asymptotic behavior. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019207

[4]

Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013

[5]

Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837

[6]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

[7]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[8]

Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007

[9]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic type chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 667-684. doi: 10.3934/krm.2015.8.667

[10]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[11]

Yihong Du, Zhigui Lin. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3105-3132. doi: 10.3934/dcdsb.2014.19.3105

[12]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[13]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[14]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[15]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[16]

Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang. A Leslie-Gower predator-prey model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2063-2084. doi: 10.3934/dcdss.2019133

[17]

Mei Li, Zhigui Lin. The spreading fronts in a mutualistic model with advection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2089-2105. doi: 10.3934/dcdsb.2015.20.2089

[18]

Alan J. Terry. Pulse vaccination strategies in a metapopulation SIR model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 455-477. doi: 10.3934/mbe.2010.7.455

[19]

Tomás Caraballo, Renato Colucci. A comparison between random and stochastic modeling for a SIR model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 151-162. doi: 10.3934/cpaa.2017007

[20]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (24)
  • HTML views (69)
  • Cited by (0)

Other articles
by authors

[Back to Top]