American Institute of Mathematical Sciences

June  2017, 14(3): 581-606. doi: 10.3934/mbe.2017034

Modeling and simulation for toxicity assessment

 1 Department of Mathematics and Statistics, Grant MacEwan University, Edmonton, Alberta, T5P2P7, Canada 2 Department of Mathematical and statistical Sciences, University of Alberta, Edmonton, Alberta, T6G2G1, Canada 3 Alberta Health, Edmonton, Alberta, T5J1S6, Canada 4 Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G2B7, Canada 5 Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, T2N4N1, Canada 6 ACEA Biosciences Inc, San Diego, California, 92121, USA

Received  February 29, 2016 Accepted  October 17, 2016 Published  December 2016

The effect of various toxicants on growth/death and morphology of human cells is investigated using the xCELLigence Real-Time Cell Analysis High Troughput in vitro assay. The cell index is measured as a proxy for the number of cells, and for each test substance in each cell line, time-dependent concentration response curves (TCRCs) are generated. In this paper we propose a mathematical model to study the effect of toxicants with various initial concentrations on the cell index. This model is based on the logistic equation and linear kinetics. We consider a three dimensional system of differential equations with variables corresponding to the cell index, the intracellular concentration of toxicant, and the extracellular concentration of toxicant. To efficiently estimate the model's parameters, we design an Expectation Maximization algorithm. The model is validated by showing that it accurately represents the information provided by the TCRCs recorded after the experiments. Using stability analysis and numerical simulations, we determine the lowest concentration of toxin that can kill the cells. This information can be used to better design experimental studies for cytotoxicity profiling assessment.

Citation: Cristina Anton, Jian Deng, Yau Shu Wong, Yile Zhang, Weiping Zhang, Stephan Gabos, Dorothy Yu Huang, Can Jin. Modeling and simulation for toxicity assessment. Mathematical Biosciences & Engineering, 2017, 14 (3) : 581-606. doi: 10.3934/mbe.2017034
References:

show all references

References:
TCRCs for (a) PF431396 and (b) monastrol
Trajectories corresponding to monastrol and initial values $0<n(0)<K$, $C_0(0)=0$, and (a) $CE(0)<\frac{\beta\eta_1^2}{\alpha\lambda_1^2}=6.51$.(b) $CE(0)>\frac{\beta\eta_1^2}{\alpha\lambda_1^2}=6.51$
The separation between persistence and extinction according to the initial values $n(0)$ and $CE(0)$, red $*$: persistence; blue $\circ$: extinction
Negative control data fitted by logistic model, dot: experimental data, line: logistic model
Smooth spline approximation, dot: experimental data, line: smooth spline
Estimation results for PF431396, dot: experimental data, line: filtered or predicted observations; (a) CE(0)=5.00uM, (b) CE(0)= 1.67uM, (c) CE(0)=0.56uM, (d) CE(0)=0.19uM, (e) CE(0)=61.73nM, (f) CE(0)= 20.58nM, (g) CE(0)= 6.86nM, (h) CE(0)=2.29nM
Estimation results for monastrol, dot: experimental data, line: filtered or predicted observations; (a) CE(0)=100.00uM, (b) CE(0)=33.33uM, (c) CE(0)=11.11uM, (d) CE(0)= 3.70uM, (e) CE(0)=1.23uM, (f) CE(0)= 0.41uM, (g) CE(0)=0.14uM, (h) CE(0)=45.72nM
Estimation results for ABT888, dot: experimental data, line: filtered or predicted observations; (a) CE(0)=308.00uM, (b) CE(0)=102.67uM, (c) CE(0)=34.22uM, (d) CE(0)=11.41uM, (e) CE(0)=3.80uM, (f) CE(0)=1.27uM, (g) CE(0)=0.42uM, (h) CE(0)=0.14uM
(a) Experimental TCRCs for PF431396 for CE(0)=5uM, 1.67uM, 0.56uM (b) Expected cell index and probability of extinction for different concentrations for PF431396
(a) Experimental TCRCs for ABT888 for CE(0)=308uM, 103uM, 34uM (b) Expected cell index and probability of extinction for different concentrations for ABT888
Estimation results for HA1100 hydrochloride, dot: experimental data, line: filtered or predicted observations; (a) CE(0)=1.00mM, (b) CE(0)=0.33mM, (c) CE(0)=0.11mM, (d) CE(0)= 37.04uM, (e) CE(0)=12.35uM, (f) CE(0)=4.12uM, (g) CE(0)=1.37uM, (h) CE(0)= 0.46uM
The first order GSA indices ranking for PF431396 (higher rank means more sensitive)
The first order GSA indices ranking for ABT888 (higher rank means more sensitive)
Network graph visualizing the second order GSA indices for (a) PF431396 with CE(0)=10uM (b) ABT888 with CE(0)=400uM
List of Variables and Parameters
 Symbol Definition $n(t)$ cell index ≈ cell population $C_0(t)$ toxicant concentration inside the cell $CE(t)$ toxicant concentration outside the cell $\beta$ cell growth rate in the absence of toxicant $K$ capacity volume $\alpha$ effect coefficient of toxicant on the cell's growth $\lambda_1^2$ the uptake rate of the toxicant from environment $\lambda_2^2$ the toxicant uptake rate from cells $\eta_1^2$ the toxicant input rate to the environment $\eta_2^2$ the losses rate of toxicant absorbed by cells
 Symbol Definition $n(t)$ cell index ≈ cell population $C_0(t)$ toxicant concentration inside the cell $CE(t)$ toxicant concentration outside the cell $\beta$ cell growth rate in the absence of toxicant $K$ capacity volume $\alpha$ effect coefficient of toxicant on the cell's growth $\lambda_1^2$ the uptake rate of the toxicant from environment $\lambda_2^2$ the toxicant uptake rate from cells $\eta_1^2$ the toxicant input rate to the environment $\eta_2^2$ the losses rate of toxicant absorbed by cells
The EM algorithm
 Initialize the model parameters $\Theta=\{Q, R,\alpha, \lambda_1,\lambda_2, \eta_1, \eta_2\}$ Repeat until the log likelihood has converged The E step For k=1 to N Run the UF filter to compute $\bar{x}_{k+1}$, $\bar{P}_{k+1}$, $\hat{x}_{k+1}$, $\hat{P}_{k+1}$ and $\bar{P}_{x_kx_{k+1}}$ For k=N to 1 Calculate the smoothed values $x_{k|N}$, and $P_{k|N}$ using (13), (14) The M step Update the values of the parameters $\Theta$ to maximize $\hat{E}$
 Initialize the model parameters $\Theta=\{Q, R,\alpha, \lambda_1,\lambda_2, \eta_1, \eta_2\}$ Repeat until the log likelihood has converged The E step For k=1 to N Run the UF filter to compute $\bar{x}_{k+1}$, $\bar{P}_{k+1}$, $\hat{x}_{k+1}$, $\hat{P}_{k+1}$ and $\bar{P}_{x_kx_{k+1}}$ For k=N to 1 Calculate the smoothed values $x_{k|N}$, and $P_{k|N}$ using (13), (14) The M step Update the values of the parameters $\Theta$ to maximize $\hat{E}$
Estimated Values of Parameters
 Toxicant Cluster β K $\eta_1$ $\lambda_1$ $\lambda_2$ $\eta_2$ $\alpha$ PF431396 Ⅹ 0.077 21.912 0.273 0.058 0 0.008 0.238 monastrol Ⅹ 0.074 18.17 0.209 0.177 0.204 0.5 0.016 ABT888 Ⅰ 0.083 17.543 0.079 0.177 0.205 0.5 0.005 HA1100 hydrochloride Ⅰ 0.077 21.913 0.143 0.0098 0.0786 0.147 0.351
 Toxicant Cluster β K $\eta_1$ $\lambda_1$ $\lambda_2$ $\eta_2$ $\alpha$ PF431396 Ⅹ 0.077 21.912 0.273 0.058 0 0.008 0.238 monastrol Ⅹ 0.074 18.17 0.209 0.177 0.204 0.5 0.016 ABT888 Ⅰ 0.083 17.543 0.079 0.177 0.205 0.5 0.005 HA1100 hydrochloride Ⅰ 0.077 21.913 0.143 0.0098 0.0786 0.147 0.351
 [1] Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601 [2] Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553 [3] Marcello Delitala, Tommaso Lorenzi. A mathematical model for value estimation with public information and herding. Kinetic & Related Models, 2014, 7 (1) : 29-44. doi: 10.3934/krm.2014.7.29 [4] Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 [5] Sebastian Springer, Heikki Haario, Vladimir Shemyakin, Leonid Kalachev, Denis Shchepakin. Robust parameter estimation of chaotic systems. Inverse Problems & Imaging, 2019, 13 (6) : 1189-1212. doi: 10.3934/ipi.2019053 [6] Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems & Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007 [7] Robert Azencott, Yutheeka Gadhyan. Accurate parameter estimation for coupled stochastic dynamics. Conference Publications, 2009, 2009 (Special) : 44-53. doi: 10.3934/proc.2009.2009.44 [8] Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933 [9] Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719 [10] Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289-315. doi: 10.3934/mbe.2005.2.289 [11] Krzysztof Fujarewicz, Krzysztof Łakomiec. Parameter estimation of systems with delays via structural sensitivity analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2521-2533. doi: 10.3934/dcdsb.2014.19.2521 [12] Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 [13] Andrea Arnold, Daniela Calvetti, Erkki Somersalo. Vectorized and parallel particle filter SMC parameter estimation for stiff ODEs. Conference Publications, 2015, 2015 (special) : 75-84. doi: 10.3934/proc.2015.0075 [14] Ferenc Hartung. Parameter estimation by quasilinearization in differential equations with state-dependent delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1611-1631. doi: 10.3934/dcdsb.2013.18.1611 [15] Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Mathematical Biosciences & Engineering, 2015, 12 (2) : 337-356. doi: 10.3934/mbe.2015.12.337 [16] Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019113 [17] Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809 [18] Abraão D. C. Nascimento, Leandro C. Rêgo, Raphaela L. B. A. Nascimento. Compound truncated Poisson normal distribution: Mathematical properties and Moment estimation. Inverse Problems & Imaging, 2019, 13 (4) : 787-803. doi: 10.3934/ipi.2019036 [19] Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Mathematical Biosciences & Engineering, 2014, 11 (3) : 573-597. doi: 10.3934/mbe.2014.11.573 [20] H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky. Optimal design for parameter estimation in EEG problems in a 3D multilayered domain. Mathematical Biosciences & Engineering, 2015, 12 (4) : 739-760. doi: 10.3934/mbe.2015.12.739

2018 Impact Factor: 1.313