January  2017, 14(1): 339-358. doi: 10.3934/mbe.2017022

A male-female mathematical model of human papillomavirus (HPV) in African American population

Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

* Corresponding author: Najat Ziyadi

Received  November 25, 2015 Accepted  April 22, 2016 Published  October 2016

We introduce mathematical human papillomavirus (HPV) epidemic models (with and without vaccination) for African American females (AAF) and African American males (AAM) with "fitted" logistic demographics and use these models to study the HPV disease dynamics. The US Census Bureau data of AAF and AAM of 16 years and older from 2000 to 2014 is used to "fit" the logistic demographic models. We compute the basic reproduction number, $\mathcal{R}_0$, and use it to show that $\mathcal{R}_0$ is less than 1 in the African American (AA) population with or without implementation of HPV vaccination program. Furthermore, we obtain that adopting a HPV vaccination policy in the AAF and AAM populations lower $\mathcal{R}_0$ and the number of HPV infections. Sensitivity analysis is used to illustrate the impact of each model parameter on the basic reproduction number.

Citation: Najat Ziyadi. A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339-358. doi: 10.3934/mbe.2017022
References:
[1]

A. Alsaleh and A. B. Gumel, Analysis of risk-structured vaccination model for the dynamics of oncogenic and warts-causing HPV types, Bulletin of Mathematical Biology, 76 (2014), 1670-1726. doi: 10.1007/s11538-014-9972-4. Google Scholar

[2]

Black male statistics, Available from: http://blackdemographics.com/black-male-statistics/. Accessed 4/12/2016.Google Scholar

[3]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology Texts in Applied Mathematics, Springer, New York, NY, 2001. doi: 10.1007/978-1-4757-3516-1. Google Scholar

[4]

J. CariboniD. GatelliR. Liska and A. Saltelli, The role of sensitivity analysis in ecological modelling, Ecological modelling, 203 (2007), 167-182. doi: 10.1016/j.ecolmodel.2005.10.045. Google Scholar

[5]

Centers for disease control and prevention, Genital HPV infection: CDC fact sheet Available from: http://www.cdc.gov/std/HPV/STDFact-HPV.htm. Accessed 4/12/2016.Google Scholar

[6]

Centers for disease control and prevention, National Vital Statistics Reports, Volume 64, Number 2.Google Scholar

[7]

Centers for Disease Control and Prevention, Human Papillomavirus (HPV), What is HPV Available from: http://www.cdc.gov/hpv/whatishpv.html. Accessed 4/12/2016.Google Scholar

[8]

Centers for Disease Control and Prevention, Morbidity and mortality weekly report, CDC grand rounds: Reducing the burden of HPV-associated cancer and disease, MMWR, Weekly, 63 (2014), 69-72.Google Scholar

[9]

Center for Disease Control and Prevention, Morbidity and Mortality Weekly Report, Weekly / Vol. 64 / No. 29. http://www.cdc.gov/mmwr/pdf/wk/mm6429.pdf. Accessed on 4/8/2016.Google Scholar

[10]

N. ChitnisJ. M. Hyman and J. M. Cushing, Determining important parameter in the spread of malaria through the sensitivity analysis of mathematical model, Bulletin of Mathematical Biology, 70 (2008), 1272-1296. doi: 10.1007/s11538-008-9299-0. Google Scholar

[11]

S. Hariri, E. Dunne, M. Saraiya, E. Unger and L. Markowitz, Chapter 5: Human papillomavirus, VPD Surveillance Manual, 5th Edition, 2011. Available from: http://www.cdc.gov/vaccines/pubs/surv-manual/chpt05-hpv.pdf. Accessed 4/12/2016.Google Scholar

[12]

http://www.census.gov/popest/data/intercensal/national/tables/US-EST00INT-03-BA.xls. Accessed 4/12/2016.Google Scholar

[13]

S. Lee and A. Tameru, A mathematical model of human papillomavirus (HPV) in the United States and its impact on cervical cancer, Journal of Cancer, 3 (2012), 262-268. doi: 10.7150/jca.4161. Google Scholar

[14]

L. Ribassin-MajedR. Lounes and S. Clemencon, Deterministic modelling for transmission of human papillomavirus 6/11: Impact of vaccination, Math Med Biol, 31 (2014), 125-149. doi: 10.1093/imammb/dqt001. Google Scholar

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Amer. Math. Soc., Rhode Island, 1995. Google Scholar

[16]

US Census Bureau, Available from: http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_11_1YR_B01001B&prodType=table. Accessed 8/28/2016.Google Scholar

[17]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[18]

N. Ziyadi, Local and global sensitivity analysis of $\mathcal{R}_0 $ in a male and female human papillomavirus (HPV) epidemic model of Moroccans, Journal of Evolution Equations 9 (2016), Accepted.Google Scholar

[19]

N. Ziyadi and A.-A. Yakubu, Local and global sensitivity analysis in a discrete-time seis epidemic model, Advances in Dynamical Systems and Applications, 11 (2016), 15-33. Google Scholar

show all references

References:
[1]

A. Alsaleh and A. B. Gumel, Analysis of risk-structured vaccination model for the dynamics of oncogenic and warts-causing HPV types, Bulletin of Mathematical Biology, 76 (2014), 1670-1726. doi: 10.1007/s11538-014-9972-4. Google Scholar

[2]

Black male statistics, Available from: http://blackdemographics.com/black-male-statistics/. Accessed 4/12/2016.Google Scholar

[3]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology Texts in Applied Mathematics, Springer, New York, NY, 2001. doi: 10.1007/978-1-4757-3516-1. Google Scholar

[4]

J. CariboniD. GatelliR. Liska and A. Saltelli, The role of sensitivity analysis in ecological modelling, Ecological modelling, 203 (2007), 167-182. doi: 10.1016/j.ecolmodel.2005.10.045. Google Scholar

[5]

Centers for disease control and prevention, Genital HPV infection: CDC fact sheet Available from: http://www.cdc.gov/std/HPV/STDFact-HPV.htm. Accessed 4/12/2016.Google Scholar

[6]

Centers for disease control and prevention, National Vital Statistics Reports, Volume 64, Number 2.Google Scholar

[7]

Centers for Disease Control and Prevention, Human Papillomavirus (HPV), What is HPV Available from: http://www.cdc.gov/hpv/whatishpv.html. Accessed 4/12/2016.Google Scholar

[8]

Centers for Disease Control and Prevention, Morbidity and mortality weekly report, CDC grand rounds: Reducing the burden of HPV-associated cancer and disease, MMWR, Weekly, 63 (2014), 69-72.Google Scholar

[9]

Center for Disease Control and Prevention, Morbidity and Mortality Weekly Report, Weekly / Vol. 64 / No. 29. http://www.cdc.gov/mmwr/pdf/wk/mm6429.pdf. Accessed on 4/8/2016.Google Scholar

[10]

N. ChitnisJ. M. Hyman and J. M. Cushing, Determining important parameter in the spread of malaria through the sensitivity analysis of mathematical model, Bulletin of Mathematical Biology, 70 (2008), 1272-1296. doi: 10.1007/s11538-008-9299-0. Google Scholar

[11]

S. Hariri, E. Dunne, M. Saraiya, E. Unger and L. Markowitz, Chapter 5: Human papillomavirus, VPD Surveillance Manual, 5th Edition, 2011. Available from: http://www.cdc.gov/vaccines/pubs/surv-manual/chpt05-hpv.pdf. Accessed 4/12/2016.Google Scholar

[12]

http://www.census.gov/popest/data/intercensal/national/tables/US-EST00INT-03-BA.xls. Accessed 4/12/2016.Google Scholar

[13]

S. Lee and A. Tameru, A mathematical model of human papillomavirus (HPV) in the United States and its impact on cervical cancer, Journal of Cancer, 3 (2012), 262-268. doi: 10.7150/jca.4161. Google Scholar

[14]

L. Ribassin-MajedR. Lounes and S. Clemencon, Deterministic modelling for transmission of human papillomavirus 6/11: Impact of vaccination, Math Med Biol, 31 (2014), 125-149. doi: 10.1093/imammb/dqt001. Google Scholar

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Amer. Math. Soc., Rhode Island, 1995. Google Scholar

[16]

US Census Bureau, Available from: http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_11_1YR_B01001B&prodType=table. Accessed 8/28/2016.Google Scholar

[17]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[18]

N. Ziyadi, Local and global sensitivity analysis of $\mathcal{R}_0 $ in a male and female human papillomavirus (HPV) epidemic model of Moroccans, Journal of Evolution Equations 9 (2016), Accepted.Google Scholar

[19]

N. Ziyadi and A.-A. Yakubu, Local and global sensitivity analysis in a discrete-time seis epidemic model, Advances in Dynamical Systems and Applications, 11 (2016), 15-33. Google Scholar

Figure 1.  The logistic demographic model "fits" $2000 - 2014$ US Census Bureau data of AAF population of 16 years and older, while constant recruitment Model (1) over estimates the AAF population
Figure 2.  The logistic demographic model "fits" $2000 - 2014$ US Census Bureau data of AAM population of 16 years and older, while constant recruitment Model (1) over estimates the AAM population
Figure 3.  Normalized sensitivity indices of $\mathcal{R}_{0}$ are evaluated at values of the parameters of Table (3). The most sensitive parameters for $\mathcal{R}_{0}$ are the clearance rate, $\delta$, the infection rate of the AAF population, $\sigma_f$, and the infection rate of the AAM population, $\sigma_m$. While the least sensitive parameters are the intrinsic growth rate for AAF population, $r_f$, the intrinsic growth rate for AAM population, $r_m$, the death rate of AAF population, $\mu_f$, and the death rate for AAM population, $\mu_m$
Figure 4.  African American male and female HPV model simulations
Figure 5.  Normalized sensitivity indices of $\mathcal{R}_{0}^v$ are evaluated at values of model parameters. The most sensitive parameters for $\mathcal{R}_{0}^v$ are the clearance rate, $\delta$, the infection rate of the AAF population, $\sigma_f$, and the infection rate of the AAM population, $\sigma_m$, the success rate of HPV vaccine, $\tau$, and the proportion of HPV vaccinated females, $p_f$. While the least sensitive parameters are the intrinsic growth rate for AAF population, $r_f$, the intrinsic growth rate for AAM population, $r_m$, the death rate of AAF population, $\mu_f$, and the death rate for AAM population, $\mu_m$
Figure 6.  African American male and female HPV model with vaccination simulations
Figure 7.  Susceptible AAF population
Figure 8.  Susceptible AAM population
Figure 9.  HPV Infected AAF population
Figure 10.  HPV Infected AAM population
Table 1.  2000 to 2014 US Census Bureau AAF population data
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
AAF population 16 years and older [12,16] 13,825,055 14,041,520 14,259,413 14,473,927 14,707,490 14,952,963 15,224,330 15,486,244 15,743,096 15,992,822 16,176,048 16,471,449 16,696,303 16,918,225 17,139,986
AAF total population [12,16] 18,787,192 19,013,351 19,229,855 19,434,349 19,653,829 19,882,081 20,123,789 20,374,894 20,626,043 20,868,282 21,045,595 21,320,013 21,543,051 21,767,521 21,988,307
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
AAF population 16 years and older [12,16] 13,825,055 14,041,520 14,259,413 14,473,927 14,707,490 14,952,963 15,224,330 15,486,244 15,743,096 15,992,822 16,176,048 16,471,449 16,696,303 16,918,225 17,139,986
AAF total population [12,16] 18,787,192 19,013,351 19,229,855 19,434,349 19,653,829 19,882,081 20,123,789 20,374,894 20,626,043 20,868,282 21,045,595 21,320,013 21,543,051 21,767,521 21,988,307
Table 2.  2000 to 2014 US Census Bureau AAM population data
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
AAM population 16 years and older [12,16] 11,909,507 12,124,810 12,332,791 12,518,252 12,756,370 12,996,123 13,266,163 13,517,841 13,765,707 14,006,594 14,181,655 14,490,027 14,724,637 14,950,933 15,176,189
AAM total population [12,16] 17,027,514 17,249,678 17,454,795 17,631,747 17,856,753 18,079,607 18,319,259 18,560,639 18,803,371 19,033,988 19,260,298 19,487,042 19,719,238 19,945,997 20,169,931
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
AAM population 16 years and older [12,16] 11,909,507 12,124,810 12,332,791 12,518,252 12,756,370 12,996,123 13,266,163 13,517,841 13,765,707 14,006,594 14,181,655 14,490,027 14,724,637 14,950,933 15,176,189
AAM total population [12,16] 17,027,514 17,249,678 17,454,795 17,631,747 17,856,753 18,079,607 18,319,259 18,560,639 18,803,371 19,033,988 19,260,298 19,487,042 19,719,238 19,945,997 20,169,931
Table 3.  Table of model parameters
Parameter (per day)DescriptionReference
$\mu_f=0.007266$Death rate for AAF population[6]
$\mu_m=0.008227$Death rate for AAM population[6]
$\delta= 0.9$Clearance rate[11]
$r_f=0.028564978$Intrinsic growth rate for AAF populationEstimated
$r_m=0.028104926$Intrinsic growth rate for AAM populationEstimated
$K_f=71,036,484$Carrying capacity for AAF populationEstimated
$K_m=140,659,009$Carrying capacity for AAF populationEstimated
$\sigma_f=0.5$Infection rate for AAF population[1]
$\sigma_m=0.4 $Infection rate for AAM population[1]
Parameter (per day)DescriptionReference
$\mu_f=0.007266$Death rate for AAF population[6]
$\mu_m=0.008227$Death rate for AAM population[6]
$\delta= 0.9$Clearance rate[11]
$r_f=0.028564978$Intrinsic growth rate for AAF populationEstimated
$r_m=0.028104926$Intrinsic growth rate for AAM populationEstimated
$K_f=71,036,484$Carrying capacity for AAF populationEstimated
$K_m=140,659,009$Carrying capacity for AAF populationEstimated
$\sigma_f=0.5$Infection rate for AAF population[1]
$\sigma_m=0.4 $Infection rate for AAM population[1]
Table 4.  Initial conditions for HPV Model (10)
$S_f(0)$=8,618,960
$S_m(0)$=7,119,370
$I_f(0)$=5,422,560
$I_m(0)$=5,005,440
$S_f(0)$=8,618,960
$S_m(0)$=7,119,370
$I_f(0)$=5,422,560
$I_m(0)$=5,005,440
Table 5.  Normalized sensitivity indices and order of importance of $\mathcal{R}_{0}$ to the nine parameters in Table (3)
ParameterSensitivity index of $\mathcal{R}_{0}$Order of Importance
$\delta$-0.99151
$\sigma_f$0.50002
$\sigma_m$0.50003
$K_f$0.15264
$K_m$-0.15265
$r_m$-0.06316
$\mu_m$0.05867
$\mu_f$-0.05618
$r_f$0.05209
ParameterSensitivity index of $\mathcal{R}_{0}$Order of Importance
$\delta$-0.99151
$\sigma_f$0.50002
$\sigma_m$0.50003
$K_f$0.15264
$K_m$-0.15265
$r_m$-0.06316
$\mu_m$0.05867
$\mu_f$-0.05618
$r_f$0.05209
Table 6.  Initial conditions for HPV Model (12)
$S_f(0)$=5,257,566
$S_f^v(0)$=3,361,394
$S_m(0)$=5,667,019
$S_m^v(0)$=1,452,351
$I_f(0)$=5,086,421
$I_f^v(0)$=336,139
$I_m(0)$=4,860,205
$I_m^v(0)$=145,235
$S_f(0)$=5,257,566
$S_f^v(0)$=3,361,394
$S_m(0)$=5,667,019
$S_m^v(0)$=1,452,351
$I_f(0)$=5,086,421
$I_f^v(0)$=336,139
$I_m(0)$=4,860,205
$I_m^v(0)$=145,235
Table 7.  Normalized sensitivity indices and order of importance of $\mathcal{R}_{0}^v$ to model parameters
ParameterSensitivity index of $\mathcal{R}_{0}^v$Order of Importance
$\delta$-0.99151
$\sigma_f$0.50002
$\sigma_m$0.50003
$\tau$-0.38294
$p_f$-0.27045
$K_f$0.15266
$K_m$-0.15267
$p_m$-0.11248
$r_m$-0.06319
$\mu_m$0.058610
$\mu_f$-0.056111
$r_f$0.052012
ParameterSensitivity index of $\mathcal{R}_{0}^v$Order of Importance
$\delta$-0.99151
$\sigma_f$0.50002
$\sigma_m$0.50003
$\tau$-0.38294
$p_f$-0.27045
$K_f$0.15266
$K_m$-0.15267
$p_m$-0.11248
$r_m$-0.06319
$\mu_m$0.058610
$\mu_f$-0.056111
$r_f$0.052012
Table 8.  Initial conditions for HPV model
$p_f=39\%$
$p_m=20.4\%$
$p_f=50\%$
$p_m=50\%$
$p_f=70\%$
$p_m=70\%$
$S_f(0)$5,257,5664,309,4802,585,688
$S_f^v(0)$3,361,3944,309,4806,033,272
$S_m(0)$5,667,0193,559,6852,135,811
$S_m^v(0)$1,452,3513,559,6854,983,559
$I_f(0)$5,086,4214,991,6124,819,233
$I_f^v(0)$336,139430,948603,327
$I_m(0)$4,860,2054,649,4724,507,084
$I_m^v(0)$145,235355,969498,356
$p_f=39\%$
$p_m=20.4\%$
$p_f=50\%$
$p_m=50\%$
$p_f=70\%$
$p_m=70\%$
$S_f(0)$5,257,5664,309,4802,585,688
$S_f^v(0)$3,361,3944,309,4806,033,272
$S_m(0)$5,667,0193,559,6852,135,811
$S_m^v(0)$1,452,3513,559,6854,983,559
$I_f(0)$5,086,4214,991,6124,819,233
$I_f^v(0)$336,139430,948603,327
$I_m(0)$4,860,2054,649,4724,507,084
$I_m^v(0)$145,235355,969498,356
[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[3]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[4]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[5]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[6]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[7]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[8]

Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295

[9]

Britnee Crawford, Christopher M. Kribs-Zaleta. The impact of vaccination and coinfection on HPV and cervical cancer. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 279-304. doi: 10.3934/dcdsb.2009.12.279

[10]

Folashade B. Agusto, Abba B. Gumel. Theoretical assessment of avian influenza vaccine. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 1-25. doi: 10.3934/dcdsb.2010.13.1

[11]

Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure & Applied Analysis, 2007, 6 (3) : 667-687. doi: 10.3934/cpaa.2007.6.667

[12]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[13]

Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219

[14]

Erin N. Bodine, Connor Cook, Mikayla Shorten. The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. Mathematical Biosciences & Engineering, 2018, 15 (2) : 337-359. doi: 10.3934/mbe.2018015

[15]

Claude Carlet, Serge Feukoua. Three basic questions on Boolean functions. Advances in Mathematics of Communications, 2017, 11 (4) : 837-855. doi: 10.3934/amc.2017061

[16]

Sukhitha W. Vidurupola, Linda J. S. Allen. Basic stochastic models for viral infection within a host. Mathematical Biosciences & Engineering, 2012, 9 (4) : 915-935. doi: 10.3934/mbe.2012.9.915

[17]

Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209

[18]

Ruben A. Proano, Sheldon H. Jacobson, Janet A. Jokela. A multi-attribute approach for setting pediatric vaccine stockpile levels. Journal of Industrial & Management Optimization, 2010, 6 (4) : 709-727. doi: 10.3934/jimo.2010.6.709

[19]

Julien Arino, K.L. Cooke, P. van den Driessche, J. Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 479-495. doi: 10.3934/dcdsb.2004.4.479

[20]

Svend Christensen, Preben Klarskov Hansen, Guozheng Qi, Jihuai Wang. The mathematical method of studying the reproduction structure of weeds and its application to Bromus sterilis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 777-788. doi: 10.3934/dcdsb.2004.4.777

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (15)
  • HTML views (7)
  • Cited by (0)

Other articles
by authors

[Back to Top]