American Institute of Mathematical Sciences

February  2017, 14(1): 127-141. doi: 10.3934/mbe.2017009

Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic

 1 DISIM, Università degli Studi dell'Aquila, via Vetoio 1 (Coppito), 67100 LAquila (AQ), Italy 2 Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, pl. Marii Curie-Sk lodowskiej 1, 20-031 Lublin, Poland

* Corresponding author: M. D. Rosini

Received  November 23, 2015 Accepted  April 15, 2016 Published  October 2016

Fund Project: MDF is supported by the Italian MIUR-PRIN project 2012L5W XHJ_003. SF is partially supported by the Italian INdAM-GNAMPA 2015 mini-project: Analisi e stabilità per modelli di equazioni alle derivate parziali nella matematica applicata. MDR is also partially supported by ICM Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego, Uniwersytet Warszawski. The authors would like to thanks Giovanni Russo for comments and suggestions on the numerical part

We consider the follow-the-leader approximation of the Aw-Rascle-Zhang (ARZ) model for traffic flow in a multi population formulation. We prove rigorous convergence to weak solutions of the ARZ system in the many particle limit in presence of vacuum. The result is based on uniform ${\mathbf{BV}}$ estimates on the discrete particle velocity. We complement our result with numerical simulations of the particle method compared with some exact solutions to the Riemann problem of the ARZ system.

Citation: Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini. Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences & Engineering, 2017, 14 (1) : 127-141. doi: 10.3934/mbe.2017009
References:

show all references

References:
Left column for Test 1 and right column for Test 2. Initial conditions are specified in the tables on the top using $N=200$ particles.
Left column for Test 3 and right column for Test 4. Initial conditions are specified in the tables on the top using $N=200$ particles.
Different numbers of particles and corresponding discrete $\mathbf{L^1}$-errors for densities.
 N Test 1 Test 2 Test 3 Test 4 100 8.9e − 03 4.1e − 03 4.7e − 03 2.1e − 03 500 1.8e − 03 1.1e − 03 1.8e − 03 4.7e − 04 1000 4.7e − 04 5.7e − 04 1.2e − 04 2.5e − 04 2000 4.5e − 04 3.4e − 04 8.2e − 04 1.3e − 04
 N Test 1 Test 2 Test 3 Test 4 100 8.9e − 03 4.1e − 03 4.7e − 03 2.1e − 03 500 1.8e − 03 1.1e − 03 1.8e − 03 4.7e − 04 1000 4.7e − 04 5.7e − 04 1.2e − 04 2.5e − 04 2000 4.5e − 04 3.4e − 04 8.2e − 04 1.3e − 04
 [1] Stefano Villa, Paola Goatin, Christophe Chalons. Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3921-3952. doi: 10.3934/dcdsb.2017202 [2] Shimao Fan, Michael Herty, Benjamin Seibold. Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Networks & Heterogeneous Media, 2014, 9 (2) : 239-268. doi: 10.3934/nhm.2014.9.239 [3] Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini. Solutions of the Aw-Rascle-Zhang system with point constraints. Networks & Heterogeneous Media, 2016, 11 (1) : 29-47. doi: 10.3934/nhm.2016.11.29 [4] Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279 [5] Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227 [6] Alberto Bressan, Marco Mazzola, Hongxu Wei. A dynamic model of the limit order book. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019206 [7] G. Caginalp, Christof Eck. Rapidly converging phase field models via second order asymptotics. Conference Publications, 2005, 2005 (Special) : 142-152. doi: 10.3934/proc.2005.2005.142 [8] Michael Burger, Simone Göttlich, Thomas Jung. Derivation of second order traffic flow models with time delays. Networks & Heterogeneous Media, 2019, 14 (2) : 265-288. doi: 10.3934/nhm.2019011 [9] Martin Redmann, Peter Benner. Approximation and model order reduction for second order systems with Levy-noise. Conference Publications, 2015, 2015 (special) : 945-953. doi: 10.3934/proc.2015.0945 [10] Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks & Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813 [11] Michael Herty, Lorenzo Pareschi, Mohammed Seaïd. Enskog-like discrete velocity models for vehicular traffic flow. Networks & Heterogeneous Media, 2007, 2 (3) : 481-496. doi: 10.3934/nhm.2007.2.481 [12] Yi-Chiuan Chen. Bernoulli shift for second order recurrence relations near the anti-integrable limit. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 587-598. doi: 10.3934/dcdsb.2005.5.587 [13] Oliver Kolb, Simone Göttlich, Paola Goatin. Capacity drop and traffic control for a second order traffic model. Networks & Heterogeneous Media, 2017, 12 (4) : 663-681. doi: 10.3934/nhm.2017027 [14] Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060 [15] Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77 [16] David Cowan. Rigid particle systems and their billiard models. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111 [17] Jin Ma, Xinyang Wang, Jianfeng Zhang. Dynamic equilibrium limit order book model and optimal execution problem. Mathematical Control & Related Fields, 2015, 5 (3) : 557-583. doi: 10.3934/mcrf.2015.5.557 [18] Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks & Heterogeneous Media, 2013, 8 (3) : 745-772. doi: 10.3934/nhm.2013.8.745 [19] Shi Jin, Min Tang, Houde Han. A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks & Heterogeneous Media, 2009, 4 (1) : 35-65. doi: 10.3934/nhm.2009.4.35 [20] Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks & Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002

2018 Impact Factor: 1.313