• Previous Article
    Sensitivity of signaling pathway dynamics to plasmid transfection and its consequences
  • MBE Home
  • This Issue
  • Next Article
    A posterior probability approach for gene regulatory network inference in genetic perturbation data
2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040

Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity

1. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo, 63130, United States

2. 

Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo 63130

Received  December 2015 Revised  February 2016 Published  August 2016

We consider cancer chemotherapy as an optimal control problem with the aim to minimize a combination of the tumor volume and side effects over an a priori specified therapy horizon when the tumor consists of a heterogeneous agglomeration of many subpopulations. The mathematical model, which accounts for different growth and apoptosis rates in the presence of cell densities, is a finite-dimensional approximation of a model originally formulated by Lorz et al. [18,19] and Greene et al. [10,11] with a continuum of possible traits. In spite of an arbitrarily high dimension, for this problem singular controls (which correspond to time-varying administration schedules at less than maximum doses) can be computed explicitly in feedback form. Interestingly, these controls have the property to keep the entire tumor population constant. Numerical computations and simulations that explore the optimality of bang-bang and singular controls are given. These point to the optimality of protocols that combine a full dose therapy segment with a period of lower dose drug administration.
Citation: Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040
References:
[1]

N. André, L. Padovani and E. Pasquier, Metronomic scheduling of anticancer treatment: The next generation of multitarget therapy?,, Future Oncology, 7 (2011), 385.

[2]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory,, Springer Verlag, (2003).

[3]

A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control,, American Institute of Mathematical Sciences, (2007).

[4]

A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors,, Bull. of Math. Biology, 65 (2003), 407. doi: 10.1016/S0092-8240(03)00006-5.

[5]

R. A. Gatenby, A. S. Silva, R. J. Gillies and B. R. Frieden, Adaptive therapy,, Cancer Research, 69 (2009), 4894. doi: 10.1158/0008-5472.CAN-08-3658.

[6]

R. A. Gatenby, A change of strategy in the war on cancer,, Nature, 459 (2009), 508. doi: 10.1038/459508a.

[7]

J. H. Goldie, Drug resistance in cancer: A perspective,, Cancer and Metastasis Review, 20 (2001), 63. doi: 10.1017/CBO9780511666544.

[8]

J. H. Goldie and A. Coldman, A model for resistance of tumor cells to cancer chemotherapeutic agents,, Mathematical Biosciences, 65 (1983), 291.

[9]

R. Grantab, S. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells,, Cancer Research, 66 (2006), 1033. doi: 10.1158/0008-5472.CAN-05-3077.

[10]

J. Greene, O. Lavi, M. M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors,, Bull. Math. Biol., 76 (2014), 627. doi: 10.1007/s11538-014-9936-8.

[11]

O. Lavi, J. Greene, D. Levy and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance,, Cancer Research, 73 (2013), 7168. doi: 10.1158/0008-5472.CAN-13-1768.

[12]

U. Ledzewicz, H. Maurer and H. Schättler, Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics,, in Recent Advances in Optimization and its Applications in Engineering, (2010), 267. doi: 10.1007/978-3-642-12598-0_23.

[13]

U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal control in cancer chemotherapy models,, Mathematical Biosciences and Engineering (MBE), 2 (2005), 561. doi: 10.3934/mbe.2005.2.561.

[14]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. Contr. Optim., 46 (2007), 1052. doi: 10.1137/060665294.

[15]

U. Ledzewicz and H. Schättler, Singular controls and chattering arcs in optimal control problems arising in biomedicine,, Control and Cybernetics, 38 (2009), 1501.

[16]

J. S. Li and N. Khaneja, Ensemble control of linear systems,, Proc. of the 46th IEEE Conference on Decision and Control, (2007), 3768.

[17]

J. S. Li and N. Khaneja, Ensemble control of Bloch equations,, IEEE Transactions on Automatic Control, 54 (2009), 528. doi: 10.1109/TAC.2009.2012983.

[18]

A. Lorz, T. Lorenzi, M. E. Hochberg, J. Clairambault and B. Berthame, Population adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies,, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 377. doi: 10.1051/m2an/2012031.

[19]

A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors,, Bull. Math. Biol., 77 (2015), 1. doi: 10.1007/s11538-014-0046-4.

[20]

L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules,, Cancer Treatment Reports, 61 (1977), 1307.

[21]

L. Norton and R. Simon, The Norton-Simon hypothesis revisited,, Cancer Treatment Reports, 70 (1986), 41.

[22]

E. Pasquier, M. Kavallaris and N. André, Metronomic chemotherapy: New rationale for new directions,, Nature Reviews|Clinical Oncology, 7 (2010), 455. doi: 10.1038/nrclinonc.2010.82.

[23]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Macmillan, (1964).

[24]

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples,, Springer, (2012). doi: 10.1007/978-1-4614-3834-2.

[25]

H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies,, Springer, (2015). doi: 10.1007/978-1-4939-2972-6.

show all references

References:
[1]

N. André, L. Padovani and E. Pasquier, Metronomic scheduling of anticancer treatment: The next generation of multitarget therapy?,, Future Oncology, 7 (2011), 385.

[2]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory,, Springer Verlag, (2003).

[3]

A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control,, American Institute of Mathematical Sciences, (2007).

[4]

A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors,, Bull. of Math. Biology, 65 (2003), 407. doi: 10.1016/S0092-8240(03)00006-5.

[5]

R. A. Gatenby, A. S. Silva, R. J. Gillies and B. R. Frieden, Adaptive therapy,, Cancer Research, 69 (2009), 4894. doi: 10.1158/0008-5472.CAN-08-3658.

[6]

R. A. Gatenby, A change of strategy in the war on cancer,, Nature, 459 (2009), 508. doi: 10.1038/459508a.

[7]

J. H. Goldie, Drug resistance in cancer: A perspective,, Cancer and Metastasis Review, 20 (2001), 63. doi: 10.1017/CBO9780511666544.

[8]

J. H. Goldie and A. Coldman, A model for resistance of tumor cells to cancer chemotherapeutic agents,, Mathematical Biosciences, 65 (1983), 291.

[9]

R. Grantab, S. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells,, Cancer Research, 66 (2006), 1033. doi: 10.1158/0008-5472.CAN-05-3077.

[10]

J. Greene, O. Lavi, M. M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors,, Bull. Math. Biol., 76 (2014), 627. doi: 10.1007/s11538-014-9936-8.

[11]

O. Lavi, J. Greene, D. Levy and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance,, Cancer Research, 73 (2013), 7168. doi: 10.1158/0008-5472.CAN-13-1768.

[12]

U. Ledzewicz, H. Maurer and H. Schättler, Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics,, in Recent Advances in Optimization and its Applications in Engineering, (2010), 267. doi: 10.1007/978-3-642-12598-0_23.

[13]

U. Ledzewicz and H. Schättler, The influence of PK/PD on the structure of optimal control in cancer chemotherapy models,, Mathematical Biosciences and Engineering (MBE), 2 (2005), 561. doi: 10.3934/mbe.2005.2.561.

[14]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. Contr. Optim., 46 (2007), 1052. doi: 10.1137/060665294.

[15]

U. Ledzewicz and H. Schättler, Singular controls and chattering arcs in optimal control problems arising in biomedicine,, Control and Cybernetics, 38 (2009), 1501.

[16]

J. S. Li and N. Khaneja, Ensemble control of linear systems,, Proc. of the 46th IEEE Conference on Decision and Control, (2007), 3768.

[17]

J. S. Li and N. Khaneja, Ensemble control of Bloch equations,, IEEE Transactions on Automatic Control, 54 (2009), 528. doi: 10.1109/TAC.2009.2012983.

[18]

A. Lorz, T. Lorenzi, M. E. Hochberg, J. Clairambault and B. Berthame, Population adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies,, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 377. doi: 10.1051/m2an/2012031.

[19]

A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil and B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors,, Bull. Math. Biol., 77 (2015), 1. doi: 10.1007/s11538-014-0046-4.

[20]

L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules,, Cancer Treatment Reports, 61 (1977), 1307.

[21]

L. Norton and R. Simon, The Norton-Simon hypothesis revisited,, Cancer Treatment Reports, 70 (1986), 41.

[22]

E. Pasquier, M. Kavallaris and N. André, Metronomic chemotherapy: New rationale for new directions,, Nature Reviews|Clinical Oncology, 7 (2010), 455. doi: 10.1038/nrclinonc.2010.82.

[23]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Macmillan, (1964).

[24]

H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples,, Springer, (2012). doi: 10.1007/978-1-4614-3834-2.

[25]

H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies,, Springer, (2015). doi: 10.1007/978-1-4939-2972-6.

[1]

Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial & Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443

[2]

Karl Kunisch, Lijuan Wang. The bang-bang property of time optimal controls for the Burgers equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3611-3637. doi: 10.3934/dcds.2014.34.3611

[3]

Karl Kunisch, Lijuan Wang. Bang-bang property of time optimal controls of semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 279-302. doi: 10.3934/dcds.2016.36.279

[4]

Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks & Heterogeneous Media, 2019, 14 (1) : 131-147. doi: 10.3934/nhm.2019007

[5]

Gengsheng Wang, Yubiao Zhang. Decompositions and bang-bang properties. Mathematical Control & Related Fields, 2017, 7 (1) : 73-170. doi: 10.3934/mcrf.2017005

[6]

Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2383-2405. doi: 10.3934/dcdsb.2019100

[7]

Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544

[8]

Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561

[9]

Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547

[10]

Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563

[11]

Urszula Ledzewicz, Mozhdeh Sadat Faraji Mosalman, Heinz Schättler. Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 1031-1051. doi: 10.3934/dcdsb.2013.18.1031

[12]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[13]

M. Soledad Aronna, J. Frédéric Bonnans, Andrei V. Dmitruk, Pablo A. Lotito. Quadratic order conditions for bang-singular extremals. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 511-546. doi: 10.3934/naco.2012.2.511

[14]

Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor anti-angiogenesis. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 691-715. doi: 10.3934/dcdsb.2009.11.691

[15]

Heinz Schättler, Urszula Ledzewicz, Benjamin Cardwell. Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Mathematical Biosciences & Engineering, 2011, 8 (2) : 355-369. doi: 10.3934/mbe.2011.8.355

[16]

Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803

[17]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[18]

Urszula Ledzewicz, Heinz Schättler. On optimal singular controls for a general SIR-model with vaccination and treatment. Conference Publications, 2011, 2011 (Special) : 981-990. doi: 10.3934/proc.2011.2011.981

[19]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083

[20]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]