• Previous Article
    Mathematical model of the atrioventricular nodal double response tachycardia and double-fire pathology
  • MBE Home
  • This Issue
  • Next Article
    Classification of Alzheimer's disease using unsupervised diffusion component analysis
2016, 13(6): 1131-1142. doi: 10.3934/mbe.2016034

Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization

1. 

Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice

2. 

Silesian University of Technology, ul.Akademicka 16, 44-100, Gliwice

Received  November 2015 Revised  June 2016 Published  August 2016

We investigate a spatial model of growth of a tumor and its sensitivity to radiotherapy. It is assumed that the radiation dose may vary in time and space, like in intensity modulated radiotherapy (IMRT). The change of the final state of the tumor depends on local differences in the radiation dose and varies with the time and the place of these local changes. This leads to the concept of a tumor's spatiotemporal sensitivity to radiation, which is a function of time and space. We show how adjoint sensitivity analysis may be applied to calculate the spatiotemporal sensitivity of the finite difference scheme resulting from the partial differential equation describing the tumor growth. We demonstrate results of this approach to the tumor proliferation, invasion and response to radiotherapy (PIRT) model and we compare the accuracy and the computational effort of the method to the simple forward finite difference sensitivity analysis. Furthermore, we use the spatiotemporal sensitivity during the gradient-based optimization of the spatiotemporal radiation protocol and present results for different parameters of the model.
Citation: Krzysztof Fujarewicz, Krzysztof Łakomiec. Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1131-1142. doi: 10.3934/mbe.2016034
References:
[1]

D. Corwin, C. Holdsworth, R. C. Rockne, A. D. Trister, M. M. Mrugala, J. K. Rockhill, R. D. Stewart, M. Phillips and K. R. Swanson, Toward Patient-Specific, Biologically Optimized Radiation Therapy Plans for the Treatment of Glioblastoma,, PLoS ONE 8, (2013). Google Scholar

[2]

K. Fujarewicz and A. Galuszka, Generalized backpropagation through time for continuous time neural networks and discrete time measurements Artificial Intelligence and Soft Computing - ICAISC 2004 (eds. L. Rutkowski, J. Siekmann, R. Tadeusiewicz and L. A. Zadeh),, Lecture Notes in Computer Science, 3070 (2004), 190. Google Scholar

[3]

K. Fujarewicz, M. Kimmel and A. Swierniak, On fitting of mathematical models of cell signaling pathways using adjoint systems,, Math. Biosci. Eng., 2 (2005), 527. doi: 10.3934/mbe.2005.2.527. Google Scholar

[4]

K. Fujarewicz, M. Kimmel, T. Lipniacki and A. Swierniak, Adjoint systems for models of cell signaling pathways and their application to parameter fitting,, IEEE/ACM Transacations On Computational Biology And Bioinformatics, 4 (2007), 322. Google Scholar

[5]

K. Fujarewicz and K. Łakomiec, Parameter estimation of systems with delays via structural sensitivity analysis,, Discrete and Continuous Dynamical Systems-series B, 19 (2014), 2521. doi: 10.3934/dcdsb.2014.19.2521. Google Scholar

[6]

P. Hoskin, A. Kirkwood, B. Popova, P. Smith, M. Robinson, E. Gallop-Evans, S. Coltart, T. Illidge, K. Madhavan, C. Brammer, P. Diez, A1. Jack and I. Syndikus, 4 Gy versus 24 Gy radiotherapy for patients with indolent lymphoma (FORT): a randomised phase 3 non-inferiority trial,, Lancet Oncology, 15 (2014), 457. Google Scholar

[7]

M. Jakubczak and K. Fujarewicz, Application of adjoint sensitivity analysis to parameter estimation of age-structured model of cell cycle,, in Information Technologies in Medicine, (). Google Scholar

[8]

K. Łakomiec and K. Fujarewicz, Parameter estimation of non-linear models using adjoint sensitivity analysis,, Advanced Approaches to Intelligent Information and Database Systems, (2014), 59. Google Scholar

[9]

K. Łakomiec, S. Kumala, R. Hancock, J. Rzeszowska-Wolny and K. Fujarewicz, Modeling the repair of DNA strand breaks caused by $\gamma$-radiation in a minichromosome,, Physical Biology, 11 (2014). Google Scholar

[10]

R. Rockne, E. C. Alvord Jr., J. K. Rockhill and K. R. Swanson, A mathematical model for brain tumor response to radiation therapy,, J. Math. Biol., 58 (2009), 561. doi: 10.1007/s00285-008-0219-6. Google Scholar

[11]

R. Rockne, J. K. Rockhill, M. Mrugala, A. M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E. C. Alvord Jr and K. R. Swanson, Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: A mathematical modeling approach,, Phys. Med. Biol., 55 (2010), 3271. Google Scholar

[12]

R. C. Rockne, A. D. Trister, J. Jacobs, A. J. Hawkins-Daarud, M. L. Neal, K. Hendrickson, M. M. Mrugala, J. K. Rockhill, P. Kinahan, K. A. Krohn and K. R. Swanson, Addendum to "A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using $^18 F-FMISO-PET$",, Journal of the Royal Society Interface, 12 (2015). Google Scholar

[13]

R. Rockne, J. K. Rockhill, M. Mrugala, A. M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E. C. Alvord and K. R. Swanson, Reply to comment on: "Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: A mathematical modeling approach",, Physics in medicine and biology, 61 (2016), 2968. Google Scholar

[14]

A. Swierniak, M. Kimmel, J. Smieja, K. Puszynski and K. Psiuk-Maksymowicz, System Engineering Approach to Planning Anticancer Therapies,, Springer, (2016). Google Scholar

show all references

References:
[1]

D. Corwin, C. Holdsworth, R. C. Rockne, A. D. Trister, M. M. Mrugala, J. K. Rockhill, R. D. Stewart, M. Phillips and K. R. Swanson, Toward Patient-Specific, Biologically Optimized Radiation Therapy Plans for the Treatment of Glioblastoma,, PLoS ONE 8, (2013). Google Scholar

[2]

K. Fujarewicz and A. Galuszka, Generalized backpropagation through time for continuous time neural networks and discrete time measurements Artificial Intelligence and Soft Computing - ICAISC 2004 (eds. L. Rutkowski, J. Siekmann, R. Tadeusiewicz and L. A. Zadeh),, Lecture Notes in Computer Science, 3070 (2004), 190. Google Scholar

[3]

K. Fujarewicz, M. Kimmel and A. Swierniak, On fitting of mathematical models of cell signaling pathways using adjoint systems,, Math. Biosci. Eng., 2 (2005), 527. doi: 10.3934/mbe.2005.2.527. Google Scholar

[4]

K. Fujarewicz, M. Kimmel, T. Lipniacki and A. Swierniak, Adjoint systems for models of cell signaling pathways and their application to parameter fitting,, IEEE/ACM Transacations On Computational Biology And Bioinformatics, 4 (2007), 322. Google Scholar

[5]

K. Fujarewicz and K. Łakomiec, Parameter estimation of systems with delays via structural sensitivity analysis,, Discrete and Continuous Dynamical Systems-series B, 19 (2014), 2521. doi: 10.3934/dcdsb.2014.19.2521. Google Scholar

[6]

P. Hoskin, A. Kirkwood, B. Popova, P. Smith, M. Robinson, E. Gallop-Evans, S. Coltart, T. Illidge, K. Madhavan, C. Brammer, P. Diez, A1. Jack and I. Syndikus, 4 Gy versus 24 Gy radiotherapy for patients with indolent lymphoma (FORT): a randomised phase 3 non-inferiority trial,, Lancet Oncology, 15 (2014), 457. Google Scholar

[7]

M. Jakubczak and K. Fujarewicz, Application of adjoint sensitivity analysis to parameter estimation of age-structured model of cell cycle,, in Information Technologies in Medicine, (). Google Scholar

[8]

K. Łakomiec and K. Fujarewicz, Parameter estimation of non-linear models using adjoint sensitivity analysis,, Advanced Approaches to Intelligent Information and Database Systems, (2014), 59. Google Scholar

[9]

K. Łakomiec, S. Kumala, R. Hancock, J. Rzeszowska-Wolny and K. Fujarewicz, Modeling the repair of DNA strand breaks caused by $\gamma$-radiation in a minichromosome,, Physical Biology, 11 (2014). Google Scholar

[10]

R. Rockne, E. C. Alvord Jr., J. K. Rockhill and K. R. Swanson, A mathematical model for brain tumor response to radiation therapy,, J. Math. Biol., 58 (2009), 561. doi: 10.1007/s00285-008-0219-6. Google Scholar

[11]

R. Rockne, J. K. Rockhill, M. Mrugala, A. M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E. C. Alvord Jr and K. R. Swanson, Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: A mathematical modeling approach,, Phys. Med. Biol., 55 (2010), 3271. Google Scholar

[12]

R. C. Rockne, A. D. Trister, J. Jacobs, A. J. Hawkins-Daarud, M. L. Neal, K. Hendrickson, M. M. Mrugala, J. K. Rockhill, P. Kinahan, K. A. Krohn and K. R. Swanson, Addendum to "A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using $^18 F-FMISO-PET$",, Journal of the Royal Society Interface, 12 (2015). Google Scholar

[13]

R. Rockne, J. K. Rockhill, M. Mrugala, A. M. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E. C. Alvord and K. R. Swanson, Reply to comment on: "Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: A mathematical modeling approach",, Physics in medicine and biology, 61 (2016), 2968. Google Scholar

[14]

A. Swierniak, M. Kimmel, J. Smieja, K. Puszynski and K. Psiuk-Maksymowicz, System Engineering Approach to Planning Anticancer Therapies,, Springer, (2016). Google Scholar

[1]

Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345

[2]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[3]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[4]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[5]

Niklas Hartung. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 445-467. doi: 10.3934/dcdsb.2015.20.445

[6]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[7]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[8]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[9]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[10]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[11]

Barbara Abraham-Shrauner. Exact solutions of nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 577-582. doi: 10.3934/dcdss.2018032

[12]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[13]

H.Thomas Banks, Danielle Robbins, Karyn L. Sutton. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1301-1333. doi: 10.3934/mbe.2013.10.1301

[14]

John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056

[15]

Gennadi M. Henkin, Victor M. Polterovich. A difference-differential analogue of the Burgers equations and some models of economic development. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 697-728. doi: 10.3934/dcds.1999.5.697

[16]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[17]

Andrea Tosin. Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks & Heterogeneous Media, 2008, 3 (1) : 43-83. doi: 10.3934/nhm.2008.3.43

[18]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[19]

Marissa Condon, Alfredo Deaño, Arieh Iserles. On systems of differential equations with extrinsic oscillation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1345-1367. doi: 10.3934/dcds.2010.28.1345

[20]

Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control & Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]