2016, 13(1): 193-207. doi: 10.3934/mbe.2016.13.193

Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion

1. 

Department of Applied Mathematics, Dong Hua University, Shanghai 200051

2. 

Departamento de Matemática Aplicada, E.T.S.I. Sistemas Informáticos, Universidad Politécnica de Madrid, 28031 Madrid, Spain

Received  October 2014 Revised  May 2015 Published  October 2015

This work studies a general reaction-diffusion model for acid-mediated tumor invasion, where tumor cells produce excess acid that primarily kills healthy cells, and thereby invade the microenvironment. The acid diffuses and could be cleared by vasculature, and the healthy and tumor cells are viewed as two species following logistic growth with mutual competition. A key feature of this model is the density-limited diffusion for tumor cells, reflecting that a healthy tissue will spatially constrain a tumor unless shrunk. Under appropriate assumptions on model parameters and on initial data, it is shown that the unique heterogeneous state is nonlinearly stable, which implies a long-term coexistence of the healthy and tumor cells in certain parameter space. Our theoretical result suggests that acidity may play a significant role in heterogeneous tumor progression.
Citation: Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193
References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in: Schmeisser, Triebel (Eds.), Function Spaces, Differential Operators and Nonlinear Analysis,, Teubner Texte zur Mathematik, 133 (1993), 9. doi: 10.1007/978-3-663-11336-2_1. Google Scholar

[2]

J. J. Casciari, S. V. Sotirchos and R. M. Sutherland, Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH,, J. Cell Physiol., 151 (1992), 386. Google Scholar

[3]

A. Fasano, M. A. Herrero and M. R. Rodrigo, Slow and fast invasion waves in a model of acid-mediated tumour growth,, Math. Biosci., 220 (2009), 45. doi: 10.1016/j.mbs.2009.04.001. Google Scholar

[4]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion,, Cancer Res., 56 (1996), 5745. Google Scholar

[5]

R. A. Gatenby and R. J. Gillies, Why do cancers have high aerobic glycolysis?,, Nat. Rev. Cancer, 4 (2004), 891. Google Scholar

[6]

R. J. Gillies, D. Verduzco and R. A. Gatenby, Evolutionary dynamics of cancer and why targeted therapy does not work,, Nat. Rev. Cancer, 12 (2012), 487. Google Scholar

[7]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl. 23, 23 (1968). Google Scholar

[8]

J. D. Murray, Mathematical Biology: I. An Introduction,, Interdisciplinary Applied Mathematics, (2002). Google Scholar

[9]

J. B. McGillen, E. A. Gaffney, N. K. Martin and P. K. Maini, A general reaction-diffusion model of acidity in cancer invasion,, J. Math. Biol., 68 (2014), 1199. doi: 10.1007/s00285-013-0665-7. Google Scholar

[10]

M. Negreanu and J. I. Tello, On a comparison method to reaction-diffusion systems and its applications to chemotaxis,, Discr. Cont. Dyn. Syst. B, 18 (2013), 2669. doi: 10.3934/dcdsb.2013.18.2669. Google Scholar

[11]

H. J. Park, J. C. Lyons, T. Ohtsubo and C. W. Song, Acidic environment causes apoptosis by increasing caspase activity,, British J. Cancer, 80 (1999), 1892. Google Scholar

[12]

Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling,, Nonlinear Analysis: RWA, 12 (2011), 418. doi: 10.1016/j.nonrwa.2010.06.027. Google Scholar

show all references

References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in: Schmeisser, Triebel (Eds.), Function Spaces, Differential Operators and Nonlinear Analysis,, Teubner Texte zur Mathematik, 133 (1993), 9. doi: 10.1007/978-3-663-11336-2_1. Google Scholar

[2]

J. J. Casciari, S. V. Sotirchos and R. M. Sutherland, Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH,, J. Cell Physiol., 151 (1992), 386. Google Scholar

[3]

A. Fasano, M. A. Herrero and M. R. Rodrigo, Slow and fast invasion waves in a model of acid-mediated tumour growth,, Math. Biosci., 220 (2009), 45. doi: 10.1016/j.mbs.2009.04.001. Google Scholar

[4]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion,, Cancer Res., 56 (1996), 5745. Google Scholar

[5]

R. A. Gatenby and R. J. Gillies, Why do cancers have high aerobic glycolysis?,, Nat. Rev. Cancer, 4 (2004), 891. Google Scholar

[6]

R. J. Gillies, D. Verduzco and R. A. Gatenby, Evolutionary dynamics of cancer and why targeted therapy does not work,, Nat. Rev. Cancer, 12 (2012), 487. Google Scholar

[7]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl. 23, 23 (1968). Google Scholar

[8]

J. D. Murray, Mathematical Biology: I. An Introduction,, Interdisciplinary Applied Mathematics, (2002). Google Scholar

[9]

J. B. McGillen, E. A. Gaffney, N. K. Martin and P. K. Maini, A general reaction-diffusion model of acidity in cancer invasion,, J. Math. Biol., 68 (2014), 1199. doi: 10.1007/s00285-013-0665-7. Google Scholar

[10]

M. Negreanu and J. I. Tello, On a comparison method to reaction-diffusion systems and its applications to chemotaxis,, Discr. Cont. Dyn. Syst. B, 18 (2013), 2669. doi: 10.3934/dcdsb.2013.18.2669. Google Scholar

[11]

H. J. Park, J. C. Lyons, T. Ohtsubo and C. W. Song, Acidic environment causes apoptosis by increasing caspase activity,, British J. Cancer, 80 (1999), 1892. Google Scholar

[12]

Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling,, Nonlinear Analysis: RWA, 12 (2011), 418. doi: 10.1016/j.nonrwa.2010.06.027. Google Scholar

[1]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[2]

Dagny Butler, Eunkyung Ko, R. Shivaji. Alternate steady states for classes of reaction diffusion models on exterior domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1181-1191. doi: 10.3934/dcdss.2014.7.1181

[3]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[4]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[5]

Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486

[6]

Wenrui Hao, Jonathan D. Hauenstein, Bei Hu, Yuan Liu, Andrew J. Sommese, Yong-Tao Zhang. Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1413-1428. doi: 10.3934/dcdss.2011.4.1413

[7]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[8]

Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367

[9]

Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271

[10]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020083

[11]

Aníbal Rodríguez-Bernal, Alejandro Vidal-López. A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (2) : 635-644. doi: 10.3934/cpaa.2014.13.635

[12]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[13]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

[14]

Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75

[15]

Piermarco Cannarsa, Alexander Khapalov. Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1293-1311. doi: 10.3934/dcdsb.2010.14.1293

[16]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[17]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[18]

Zhoude Shao. Existence and continuity of strong solutions of partly dissipative reaction diffusion systems. Conference Publications, 2011, 2011 (Special) : 1319-1328. doi: 10.3934/proc.2011.2011.1319

[19]

Anton Arnold, Laurent Desvillettes, Céline Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure & Applied Analysis, 2012, 11 (1) : 83-96. doi: 10.3934/cpaa.2012.11.83

[20]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]