2015, 12(5): 983-1006. doi: 10.3934/mbe.2015.12.983

Multi-host transmission dynamics of schistosomiasis and its optimal control

1. 

Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing, 210094, China

2. 

LAboratory of Mathematical Parallel Systems (LAMPS), Centre for Disease Modeling, Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3

Received  December 2014 Revised  March 2015 Published  June 2015

In this paper we formulate a dynamical model to study the transmission dynamics of schistosomiasis in humans and snails. We also incorporate bovines in the model to study their impact on transmission and controlling the spread of Schistosoma japonicum in humans in China. The dynamics of the model is rigorously analyzed by using the theory of dynamical systems. The theoretical results show that the disease free equilibrium is globally asymptotically stable if $\mathcal R_0<1$, and if $\mathcal R_0>1$ the system has only one positive equilibrium. The local stability of the unique positive equilibrium is investigated and sufficient conditions are also provided for the global stability of the positive equilibrium. The optimal control theory are further applied to the model to study the corresponding optimal control problem. Both analytical and numerical results suggest that: (a) the infected bovines play an important role in the spread of schistosomiasis among humans, and killing the infected bovines will be useful to prevent transmission of schistosomiasis among humans; (b) optimal control strategy performs better than the constant controls in reducing the prevalence of the infected human and the cost for implementing optimal control is much less than that for constant controls; and (c) improving the treatment rate of infected humans, the killing rate of the infected bovines and the fishing rate of snails in the early stage of spread of schistosomiasis are very helpful to contain the prevalence of infected human case as well as minimize the total cost.
Citation: Chunxiao Ding, Zhipeng Qiu, Huaiping Zhu. Multi-host transmission dynamics of schistosomiasis and its optimal control. Mathematical Biosciences & Engineering, 2015, 12 (5) : 983-1006. doi: 10.3934/mbe.2015.12.983
References:
[1]

A. Abdelrazec, S. Lenhart and H. Zhu, Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids,, Journal of Mathematical Biology, 68 (2014), 1553. doi: 10.1007/s00285-013-0677-3. Google Scholar

[2]

L. J. Abu-Raddad, A. S. Magaret, C. Celum, A. Wald, I. M. Longini Jr, S. G. Self and L. Corey, Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa,, PloS One, 3 (2008). Google Scholar

[3]

K. W. Blayneh, A. B. Gumel, S. Lenhart and C. Tim, Backward bifurcation and optimal control in transmission dynamics of West Nile virus,, Bulletin of Mathematical Biology, 72 (2010), 1006. doi: 10.1007/s11538-009-9480-0. Google Scholar

[4]

C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models,, Mathematical Population Dynamics: Analysis of Heterogeneity, 1 (1995), 33. Google Scholar

[5]

Z. Feng, C. Li and F. A. Milner, Schistosomiasis models with density dependence and age of infection in snail dynamics,, Mathematical Biosciences, 177 (2002), 271. doi: 10.1016/S0025-5564(01)00115-8. Google Scholar

[6]

Z. Feng, Z. Qiu, Z. Sang, C. Lorenzo and J. Glasser, Modeling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy,, Mathematical Biosciences, 245 (2013), 171. doi: 10.1016/j.mbs.2013.07.003. Google Scholar

[7]

A. Fenton and A. B. Pedersen, Community epidemiology framework for classifying disease threats,, Emerging Infectious Diseases, 11 (2005), 1815. Google Scholar

[8]

W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control,, Springer, (1975). Google Scholar

[9]

D. J. Gray, G. M. Williams, Y. Li and D. P. McManus, Transmission dynamics of Schistosoma japonicum in the lakes and marshlands of China,, PLoS One, 3 (2008). Google Scholar

[10]

J. O. Lloyd-Smith, D. George, K. M. Pepin, V. E. Pitzer, J. R. Pulliam, A. P. Dobson, P. J. Hudson and B. T. Grenfell, Epidemic dynamics at the human-animal interface,, Science, 326 (2009), 1362. Google Scholar

[11]

L. S. Pontryagin, Mathematical Theory of Optimal Processes,, Interscience Publishers John Wiley and Sons, (1962). Google Scholar

[12]

M. Rafikov, L. Bevilacqua and A. P. P. Wyse, Optimal control strategy of malaria vector using genetically modified mosquitoes,, Journal of Theoretical Biology, 258 (2009), 418. doi: 10.1016/j.jtbi.2008.08.006. Google Scholar

[13]

S. Riley, H. Carabin, P. Bélisle, L. Joseph, V. Tallo, E. Balolong, A. L. Willingham III, T. J. Fernandez Jr., R. O. Gonzales, R. Olveda and S. T. McGarvey, Multi-host transmission dynamics of Schistosoma japonicum in Samar Province, the Philippines,, PLoS Medicine, 5 (2008). Google Scholar

[14]

J. W. Rudge, J. P. Webster, D. B. Lu, T. P. Wang, G. R. Fang and M. G. Basanez, Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China,, Proceedings of the National Academy of Sciences, 110 (2013), 11457. Google Scholar

[15]

C. Shan, X. Zhou and H. Zhu, The Dynamics of Growing Islets and Transmission of Schistosomiasis Japonica in the Yangtze River,, Bulletin of Mathematical Biology, 76 (2014), 1194. doi: 10.1007/s11538-014-9961-7. Google Scholar

[16]

H. L. Smith, Cooperative systems of differential equations with concave nonlinearities,, Nonlinear Analysis: Theory, 10 (1986), 1037. Google Scholar

[17]

H. L. Smith and P. Waltman, Perturbation of a globally stable steady state,, Proceedings of the American Mathematical Society, 127 (1999), 447. doi: 10.1090/S0002-9939-99-04768-1. Google Scholar

[18]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[19]

W. Wang and X. Q. Zhao, An epidemic model in a patchy environment,, Mathematical Biosciences, 190 (2004), 97. doi: 10.1016/j.mbs.2002.11.001. Google Scholar

[20]

World Health Organization, , (). Google Scholar

[21]

M. J. Woolhouse, On the application of mathematical models of schistosome transmission dynamics. II. Control,, Acta Tropica, 50 (1992), 189. Google Scholar

[22]

J. Xiang, H. Chen and H. Ishikawa, A mathematical model for the transmission of Schistosoma japonicum in consideration of seasonal water level fluctuations of Poyang Lake in Jiangxi, China,, Parasitology International, 62 (2013), 118. Google Scholar

[23]

P. Zhang, Z. Feng and F. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies,, Mathematical Biosciences, 205 (2007), 83. doi: 10.1016/j.mbs.2006.06.006. Google Scholar

[24]

R. Zhao and F. A. Milner, A mathematical model of Schistosoma mansoni in Biomphalaria glabrata with control strategies,, Bulletin of Mathematical Biology, 70 (2008), 1886. doi: 10.1007/s11538-008-9330-5. Google Scholar

[25]

Y. B. Zhou, S. Liang and Q. W. Jiang, Factors impacting on progress towards elimination of transmission of schistosomiasis japonica in China,, Parasit Vectors, 5 (2012), 257. Google Scholar

show all references

References:
[1]

A. Abdelrazec, S. Lenhart and H. Zhu, Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids,, Journal of Mathematical Biology, 68 (2014), 1553. doi: 10.1007/s00285-013-0677-3. Google Scholar

[2]

L. J. Abu-Raddad, A. S. Magaret, C. Celum, A. Wald, I. M. Longini Jr, S. G. Self and L. Corey, Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa,, PloS One, 3 (2008). Google Scholar

[3]

K. W. Blayneh, A. B. Gumel, S. Lenhart and C. Tim, Backward bifurcation and optimal control in transmission dynamics of West Nile virus,, Bulletin of Mathematical Biology, 72 (2010), 1006. doi: 10.1007/s11538-009-9480-0. Google Scholar

[4]

C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models,, Mathematical Population Dynamics: Analysis of Heterogeneity, 1 (1995), 33. Google Scholar

[5]

Z. Feng, C. Li and F. A. Milner, Schistosomiasis models with density dependence and age of infection in snail dynamics,, Mathematical Biosciences, 177 (2002), 271. doi: 10.1016/S0025-5564(01)00115-8. Google Scholar

[6]

Z. Feng, Z. Qiu, Z. Sang, C. Lorenzo and J. Glasser, Modeling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy,, Mathematical Biosciences, 245 (2013), 171. doi: 10.1016/j.mbs.2013.07.003. Google Scholar

[7]

A. Fenton and A. B. Pedersen, Community epidemiology framework for classifying disease threats,, Emerging Infectious Diseases, 11 (2005), 1815. Google Scholar

[8]

W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control,, Springer, (1975). Google Scholar

[9]

D. J. Gray, G. M. Williams, Y. Li and D. P. McManus, Transmission dynamics of Schistosoma japonicum in the lakes and marshlands of China,, PLoS One, 3 (2008). Google Scholar

[10]

J. O. Lloyd-Smith, D. George, K. M. Pepin, V. E. Pitzer, J. R. Pulliam, A. P. Dobson, P. J. Hudson and B. T. Grenfell, Epidemic dynamics at the human-animal interface,, Science, 326 (2009), 1362. Google Scholar

[11]

L. S. Pontryagin, Mathematical Theory of Optimal Processes,, Interscience Publishers John Wiley and Sons, (1962). Google Scholar

[12]

M. Rafikov, L. Bevilacqua and A. P. P. Wyse, Optimal control strategy of malaria vector using genetically modified mosquitoes,, Journal of Theoretical Biology, 258 (2009), 418. doi: 10.1016/j.jtbi.2008.08.006. Google Scholar

[13]

S. Riley, H. Carabin, P. Bélisle, L. Joseph, V. Tallo, E. Balolong, A. L. Willingham III, T. J. Fernandez Jr., R. O. Gonzales, R. Olveda and S. T. McGarvey, Multi-host transmission dynamics of Schistosoma japonicum in Samar Province, the Philippines,, PLoS Medicine, 5 (2008). Google Scholar

[14]

J. W. Rudge, J. P. Webster, D. B. Lu, T. P. Wang, G. R. Fang and M. G. Basanez, Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China,, Proceedings of the National Academy of Sciences, 110 (2013), 11457. Google Scholar

[15]

C. Shan, X. Zhou and H. Zhu, The Dynamics of Growing Islets and Transmission of Schistosomiasis Japonica in the Yangtze River,, Bulletin of Mathematical Biology, 76 (2014), 1194. doi: 10.1007/s11538-014-9961-7. Google Scholar

[16]

H. L. Smith, Cooperative systems of differential equations with concave nonlinearities,, Nonlinear Analysis: Theory, 10 (1986), 1037. Google Scholar

[17]

H. L. Smith and P. Waltman, Perturbation of a globally stable steady state,, Proceedings of the American Mathematical Society, 127 (1999), 447. doi: 10.1090/S0002-9939-99-04768-1. Google Scholar

[18]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[19]

W. Wang and X. Q. Zhao, An epidemic model in a patchy environment,, Mathematical Biosciences, 190 (2004), 97. doi: 10.1016/j.mbs.2002.11.001. Google Scholar

[20]

World Health Organization, , (). Google Scholar

[21]

M. J. Woolhouse, On the application of mathematical models of schistosome transmission dynamics. II. Control,, Acta Tropica, 50 (1992), 189. Google Scholar

[22]

J. Xiang, H. Chen and H. Ishikawa, A mathematical model for the transmission of Schistosoma japonicum in consideration of seasonal water level fluctuations of Poyang Lake in Jiangxi, China,, Parasitology International, 62 (2013), 118. Google Scholar

[23]

P. Zhang, Z. Feng and F. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies,, Mathematical Biosciences, 205 (2007), 83. doi: 10.1016/j.mbs.2006.06.006. Google Scholar

[24]

R. Zhao and F. A. Milner, A mathematical model of Schistosoma mansoni in Biomphalaria glabrata with control strategies,, Bulletin of Mathematical Biology, 70 (2008), 1886. doi: 10.1007/s11538-008-9330-5. Google Scholar

[25]

Y. B. Zhou, S. Liang and Q. W. Jiang, Factors impacting on progress towards elimination of transmission of schistosomiasis japonica in China,, Parasit Vectors, 5 (2012), 257. Google Scholar

[1]

Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024

[2]

Linhua Zhou, Meng Fan, Qiang Hou, Zhen Jin, Xiangdong Sun. Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China. Mathematical Biosciences & Engineering, 2018, 15 (2) : 543-567. doi: 10.3934/mbe.2018025

[3]

Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034

[4]

Arturo Alvarez-Arenas, Konstantin E. Starkov, Gabriel F. Calvo, Juan Belmonte-Beitia. Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2017-2038. doi: 10.3934/dcdsb.2019082

[5]

Yingke Li, Zhidong Teng, Shigui Ruan, Mingtao Li, Xiaomei Feng. A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1279-1299. doi: 10.3934/mbe.2017066

[6]

Chunhua Shan, Hongjun Gao, Huaiping Zhu. Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1099-1115. doi: 10.3934/mbe.2011.8.1099

[7]

M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure & Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743

[8]

Mingtao Li, Guiquan Sun, Juan Zhang, Zhen Jin, Xiangdong Sun, Youming Wang, Baoxu Huang, Yaohui Zheng. Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1115-1137. doi: 10.3934/mbe.2014.11.1115

[9]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[10]

Luca Galbusera, Sara Pasquali, Gianni Gilioli. Stability and optimal control for some classes of tritrophic systems. Mathematical Biosciences & Engineering, 2014, 11 (2) : 257-283. doi: 10.3934/mbe.2014.11.257

[11]

Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008

[12]

Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi. On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences & Engineering, 2013, 10 (3) : 803-819. doi: 10.3934/mbe.2013.10.803

[13]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[14]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[15]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[16]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[17]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[18]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[19]

Alexander J. Zaslavski. Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 245-260. doi: 10.3934/naco.2011.1.245

[20]

Olha P. Kupenko, Rosanna Manzo. Shape stability of optimal control problems in coefficients for coupled system of Hammerstein type. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2967-2992. doi: 10.3934/dcdsb.2015.20.2967

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]