2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41

Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach

1. 

Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom

2. 

Department of Computing and Information Management, Hong Kong Institute of Vocational Education, Chai Wan, Hong Kong, China

Received  May 2014 Revised  September 2014 Published  December 2014

We consider quasi-stationary (travelling wave type) solutions to a nonlinear reaction-diffusion equation with arbitrary, autonomous coefficients, describing the evolution of glioblastomas, aggressive primary brain tumors that are characterized by extensive infiltration into the brain and are highly resistant to treatment. The second order nonlinear equation describing the glioblastoma growth through travelling waves can be reduced to a first order Abel type equation. By using the integrability conditions for the Abel equation several classes of exact travelling wave solutions of the general reaction-diffusion equation that describes glioblastoma growth are obtained, corresponding to different forms of the product of the diffusion and reaction functions. The solutions are obtained by using the Chiellini lemma and the Lemke transformation, respectively, and the corresponding equations represent generalizations of the classical Fisher--Kolmogorov equation. The biological implications of two classes of solutions are also investigated by using both numerical and semi-analytical methods for realistic values of the biological parameters.
Citation: Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41
References:
[1]

M. S. Ahluwalia, J. de Groot, W. M. Liu and C. L. Gladson, Targeting SRC in glioblastoma tumors and brain metastases: Rationale and preclinical studies,, Cancer Letters, 298 (2010), 139. doi: 10.1016/j.canlet.2010.08.014. Google Scholar

[2]

E. C. Alvord, Jr., Patterns of growth of gliomas,, American Journal of Neuroradiology, 16 (1995), 1013. Google Scholar

[3]

M. Bellini, R. Deza and N. Giovanbattista, Exact travelling annular waves in generalized reaction-diffusion equations,, Physics Letters A, 232 (1997), 200. doi: 10.1016/S0375-9601(97)00360-5. Google Scholar

[4]

T. Brugarino, Exact solutions of nonlinear differential equations using the Abelian equation of the first type,, Il Nuovo Cimento, 119 (2004), 975. Google Scholar

[5]

A. Chiellini, Sull'integrazione dell'equazione differenziale $y^{'} + Py^ 2 +Qy^ 3 =0$,, Bollettino dell Unione Matematica Italiana, 10 (1931), 301. Google Scholar

[6]

T. Demuth and M. E. Berens, Molecular mechanisms of glioma cell migration and invasion,, Journal of Neuro-Oncology, 70 (2004), 217. doi: 10.1007/s11060-004-2751-6. Google Scholar

[7]

S. E. Eikenberry, T. Sankar, M. C. Preul, E. J. Kostelich, C. J. Thalhauser and Y. Kuang, Virtual glioblastoma: Growth, migration and treatment in a three-dimensional mathematical model, 2009,, Cell Prolif., 42 (2009), 511. Google Scholar

[8]

R. A. Fisher, The Genetical Theory of Natural Selection,, Oxford, (1999). Google Scholar

[9]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355. doi: 10.1111/j.1469-1809.1937.tb02153.x. Google Scholar

[10]

N. Follain, J.-M. Valleton, L. Lebrun, B. Alexandre, P. Schaetzel, M. Metayer and S. Marais, Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes,, Journal of Membrane Science, 349 (2010), 195. doi: 10.1016/j.memsci.2009.11.044. Google Scholar

[11]

P. Gerlee and S. Nelander, The Impact of Phenotypic Switching on Glioblastoma Growth and Invasion,, PLOS Computational Biology, 8 (2012). doi: 10.1371/journal.pcbi.1002556. Google Scholar

[12]

P. Gerlee and S. Nelander, Travelling wave analysis of a mathematical model of glioblastoma growth,, preprint, (). Google Scholar

[13]

S. G. Giatili and G. S. Stamatakos, A detailed numerical treatment of the boundary conditions imposed by the skull on a diffusion-reaction model of glioma tumor growth. Clinical validation aspects,, Applied Mathematics and Computation, 218 (2012), 8779. doi: 10.1016/j.amc.2012.02.036. Google Scholar

[14]

B. H. Gilding and R. Kersner, The Characterization of Reaction-Convection-Diffusion Processes by Travelling Waves,, Journal of differential equations, 124 (1996), 27. doi: 10.1006/jdeq.1996.0002. Google Scholar

[15]

B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion Convection Reaction,, Birkhäuser, (2004). doi: 10.1007/978-3-0348-7964-4. Google Scholar

[16]

V. V. Golubev, Vorlesungen über Differentialgleichungen im Komplexen,, Deutsch. Verlag Wissenschaft., (1958). Google Scholar

[17]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Computers and Mathematics with Applications, 46 (2003), 849. doi: 10.1016/S0898-1221(03)90147-7. Google Scholar

[18]

T. Harko, F. S. N. Lobo and M. K. Mak, Exact analytical solutions of the Susceptible-Infected- Recovered (SIR) epidemic model and of the SIR model with equal deaths and births,, Applied Mathematics and Computation, 236 (2014), 184. doi: 10.1016/j.amc.2014.03.030. Google Scholar

[19]

T. Harko, F. S. N. Lobo and M. K. Mak, A Chiellini type integrability condition for the generalized first kind Abel differential equation,, Universal Journal of Applied Mathematics, 1 (2013), 101. Google Scholar

[20]

T. Harko, F. S. N. Lobo and M. K. Mak, A class of exact solutions of the Liénard type ordinary non-linear differential equation,, Journal of Engineering Mathematics, (). Google Scholar

[21]

H. L. P. Harpold, E. C. Alvord, Jr. and K. R. Swanson, The Evolution of Mathematical Modeling of Glioma Proliferation and Invasion,, J Neuropathol Exp Neurol, 66 (2007), 1. doi: 10.1097/nen.0b013e31802d9000. Google Scholar

[22]

H. Hatzikirou, L. Brusch, K. Schaller, M. Simon and A. Deutsch, Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion,, Computers and Mathematics with Applications, 59 (2010), 2326. doi: 10.1016/j.camwa.2009.08.041. Google Scholar

[23]

H. Hatzikirou, D. Basanta, M. Simon, K. Schaller and A. Deutsch, "Go or Grow": the key to the emergence of invasion in tumour progression?,, Mathematical Medicine and Biology, 29 (2012), 49. doi: 10.1093/imammb/dqq011. Google Scholar

[24]

P. Hinow, P. Gerlee, L. J. McCawley, V. Quaranta, M. Ciobanu, S. Wang, J. M. Graham, B. P. Ayati, J. Claridge, K. R. Swanson, M. Loveless and A. R. A. Anderson, A Spatial Model of Tumor-Host Interaction: Application of Chemotherapy,, Math. Biosci. Eng., 6 (2009), 521. doi: 10.3934/mbe.2009.6.521. Google Scholar

[25]

S. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K. R. Swanson, M. Pélégrini-Issac, R. Guillevin and H. Benali, Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging,, Magnetic Resonance in Medicine, 54 (2005), 616. doi: 10.1002/mrm.20625. Google Scholar

[26]

S. Joannès, L. Mazé and A. R. Bunsell, A concentration-dependent diffusion coefficient model for water sorption in composite,, Composite Structures, 108 (2014), 111. Google Scholar

[27]

D. R. Johnson and B. P. O'Neill, Glioblastoma survival in the United States before and during the temozolomide era,, Journal of Neurooncology, 107 (2012), 359. doi: 10.1007/s11060-011-0749-4. Google Scholar

[28]

M. Kinoshita, N. Hashimoto, T. Goto, N. Kagawa, H. Kishima, S. Izumoto, H. Tanaka, N. Fujita and T. Yoshimine, NeuroImage,, 43 (2008), 43 (2008), 29. Google Scholar

[29]

E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen,, Chelsea, (1959). Google Scholar

[30]

A. Kolmogorov, I. Petrovskii and N. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application a un problème biologique,, Bulletin de l'Université d'État à Moscou, 1 (1937), 1. Google Scholar

[31]

H. Lemke, Über eine von R. Liouville untersuchte Differentialgleichung erster Ordnung,, Sitzungs. Berl. Math. Ges., 18 (1920), 26. Google Scholar

[32]

C. K. N. Li, The glucose distribution in 9L rat brain multicell tumour spheroids and its effect on cell necrosis,, Cancer, 50 (1982), 2066. Google Scholar

[33]

D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet, B. W. Scheithauer and P. Kleihues, The 2007 WHO Classification of Tumours of the Central Nervous System,, Acta Neuropathol., 114 (2007), 97. doi: 10.1007/s00401-007-0243-4. Google Scholar

[34]

M. K. Mak, H. W. Chan and T. Harko, Solutions generating technique for Abel type non-linear ordinary differential equations,, Computers and Mathematics with Applications, 41 (2001), 1395. doi: 10.1016/S0898-1221(01)00104-3. Google Scholar

[35]

M. K. Mak and T. Harko, New method for generating general solution of Abel differential equations,, Computers and Mathematics with Applications, 43 (2002), 91. doi: 10.1016/S0898-1221(01)00274-7. Google Scholar

[36]

S. C. Mancas and H. C. Rosu, Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations,, Physics Letters, A 377 (2013), 1234. doi: 10.1016/j.physleta.2013.04.024. Google Scholar

[37]

S. C. Mancas and H. C. Rosu, Integrable Ermakov-Pinney equations with nonlinear Chiellini 'damping',, preprint, (). Google Scholar

[38]

S. C. Mancas, G. Spradlin and H. Khanal, Weierstrass traveling wave solutions for dissipative Benjamin, Bona, and Mahony (BBM) equation,, Journal of Mathematical Physics, 54 (2013). doi: 10.1063/1.4817342. Google Scholar

[39]

E. Mandonnet, J.-Y. Delattre, M.-L. Tanguy, K. R. Swanson, A. F. Carpentier, H. Duffau, P. Cornu, R. Van Effenterre, E. C. Alvord. Jr. and L. Capelle, Continuous growth of mean tumor diameter in a subset of grade II gliomas,, Annals of Neurology, 53 (2003), 524. Google Scholar

[40]

D. C. Markham, M. J. Simpson, P. K. Maini, E. A. Gaffney and R. E. Baker, Comparing methods for modelling spreading cell fronts,, Journal of Theoretical Biology, 353 (2014), 95. doi: 10.1016/j.jtbi.2014.02.023. Google Scholar

[41]

A. Martínez-González, G. F. Calvo, L. A. Pérez Romasanta and V. M. Pérez-García, Hypoxic Cell Waves Around Necrotic Cores in Glioblastoma: A Biomathematical Model and Its Therapeutic Implications,, Bulletin of Mathematical Biology, 74 (2012), 2875. doi: 10.1007/s11538-012-9786-1. Google Scholar

[42]

M. Marusic, Z. Bajzer, J. P. Freyer and S. Vuk-Palovic, Analysis of growth of multicellular tumour spheroids by mathematical models,, Cell Prolif, 27 (1994), 73. Google Scholar

[43]

A. Matzavinos and M. A. J. Chaplain, Traveling-wave analysis of a model of the immune response to cancer, 2004,, C. R. Biologies, 327 (2004), 995. Google Scholar

[44]

E. Mehrara, E. Forssell-Aronsson, H. Ahlman and P. Bernhardt, Quantitative analysis of tumor growth rate and changes in tumor marker level: Specific growth rate versus doubling time,, Acta Oncologica, 48 (2009), 591. doi: 10.1080/02841860802616736. Google Scholar

[45]

J. D. Murray, On travelling wave solutions in a model for the Belousov-Zhabotinskii reaction,, Journal of Theoretical Biology, 56 (1976), 329. doi: 10.1016/S0022-5193(76)80078-1. Google Scholar

[46]

J. D. Murray, Mathematical Biology,, 3rd ed, (2002). doi: 10.1007/b98869. Google Scholar

[47]

B. Perthame, M. Tang and N. Vauchelet, Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient,, Math. Models Methods Appl. Sci., 24 (2014), 2601. doi: 10.1142/S0218202514500316. Google Scholar

[48]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations,, Chapman & Hall/CRC, (2003). Google Scholar

[49]

R. Rockne, E. C. Alvord Jr., J. K. Rockhill and K. R. Swanson, A mathematical model for brain tumor response to radiation therapy,, J. Math. Biol., 58 (2009), 561. doi: 10.1007/s00285-008-0219-6. Google Scholar

[50]

A. M. Samsonov, On exact quasistationary solutions to a nonlinear reaction-diffusion equation,, Physics Letters A, 245 (1998), 527. doi: 10.1016/S0375-9601(98)00458-7. Google Scholar

[51]

D. L. Silbergeld, R. C. Rostomily and E. C. Alvord Jr., The cause of death in patients with glioblastoma is multifactorial: clinical factors and autopsy findings in 117 cases of supratentorial glioblastoma in adults,, Journal of Neuro-Oncology, 10 (1991), 179. doi: 10.1007/BF00146880. Google Scholar

[52]

H. E. Skipper, F. M. Schabel and H. H. Lloyd, Dose-response and tumor cell repopulation rate in chemotherapeutic trials,, Adv. Cancer Chemother., 1 (1979), 205. Google Scholar

[53]

A. Solovyova, P. Schuck, L. Costenaro and C. Ebel, Non-Ideality by Sedimentation Velocity of Halophilic Malate Dehydrogenase in Complex Solvents,, Biophysical Journal, 81 (2001), 1868. doi: 10.1016/S0006-3495(01)75838-9. Google Scholar

[54]

A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, A Mathematical Model of Glioblastoma Tumor Spheroid Invasion in a Three-Dimensional In Vitro Experiment,, Biophysical Journal, 92 (2007), 356. doi: 10.1529/biophysj.106.093468. Google Scholar

[55]

K. R. Swanson, C. Bridgea, J. D. Murray and E. C. Alvord Jr., Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion,, Journal of the Neurological Sciences, 216 (2003), 1. doi: 10.1016/j.jns.2003.06.001. Google Scholar

[56]

K. R. Swanson and E. C. Alvord Jr., The concept of gliomas as a travelling wave - application of a mathematical model to high - and low-grade gliomas,, Can J Neurol Sci, 29 (2002). Google Scholar

[57]

P. Tracqui, G. C. Cruywagen, D. E. Woodward, G. T. Bartooll, J. D. Murray and E. C. Alvord, Jr., A mathematical model of glioma growth: The effect of chemotherapy on spatio-temporal growth,, Cell Prolif., 28 (1995), 17. doi: 10.1111/j.1365-2184.1995.tb00036.x. Google Scholar

[58]

P. Y. Wen and S. Kesari, Malignant Gliomas in Adults,, The New England Journal of Medicine, 359 (2008), 492. doi: 10.1056/NEJMra0708126. Google Scholar

[59]

G. B. West, J. H. Brown and B. J. Enquist, A general model for ontogenetic growth,, Nature, 413 (2001), 628. doi: 10.1038/35098076. Google Scholar

[60]

D. E. Woodward, J. Cook, P. Tracqui, G. C. Cruywagen, J. D. Murray and E. C. Alvord, Jr., A mathematical model of glioma growth: The effect of extent of surgical resection,, Cell. Prolif., 29 (1996), 269. doi: 10.1111/j.1365-2184.1996.tb01580.x. Google Scholar

[61]

E. D. Yorke, Z. Fuks, L. Norton, V. Whitmore and C. C. Ling, Modeling the Development of Metastases from Primary and Locally Recurrent Tumors: Comparison with a Clinical Data Base for Prostatic Cancer,, Cancer Research, 53 (1993), 2987. Google Scholar

show all references

References:
[1]

M. S. Ahluwalia, J. de Groot, W. M. Liu and C. L. Gladson, Targeting SRC in glioblastoma tumors and brain metastases: Rationale and preclinical studies,, Cancer Letters, 298 (2010), 139. doi: 10.1016/j.canlet.2010.08.014. Google Scholar

[2]

E. C. Alvord, Jr., Patterns of growth of gliomas,, American Journal of Neuroradiology, 16 (1995), 1013. Google Scholar

[3]

M. Bellini, R. Deza and N. Giovanbattista, Exact travelling annular waves in generalized reaction-diffusion equations,, Physics Letters A, 232 (1997), 200. doi: 10.1016/S0375-9601(97)00360-5. Google Scholar

[4]

T. Brugarino, Exact solutions of nonlinear differential equations using the Abelian equation of the first type,, Il Nuovo Cimento, 119 (2004), 975. Google Scholar

[5]

A. Chiellini, Sull'integrazione dell'equazione differenziale $y^{'} + Py^ 2 +Qy^ 3 =0$,, Bollettino dell Unione Matematica Italiana, 10 (1931), 301. Google Scholar

[6]

T. Demuth and M. E. Berens, Molecular mechanisms of glioma cell migration and invasion,, Journal of Neuro-Oncology, 70 (2004), 217. doi: 10.1007/s11060-004-2751-6. Google Scholar

[7]

S. E. Eikenberry, T. Sankar, M. C. Preul, E. J. Kostelich, C. J. Thalhauser and Y. Kuang, Virtual glioblastoma: Growth, migration and treatment in a three-dimensional mathematical model, 2009,, Cell Prolif., 42 (2009), 511. Google Scholar

[8]

R. A. Fisher, The Genetical Theory of Natural Selection,, Oxford, (1999). Google Scholar

[9]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355. doi: 10.1111/j.1469-1809.1937.tb02153.x. Google Scholar

[10]

N. Follain, J.-M. Valleton, L. Lebrun, B. Alexandre, P. Schaetzel, M. Metayer and S. Marais, Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes,, Journal of Membrane Science, 349 (2010), 195. doi: 10.1016/j.memsci.2009.11.044. Google Scholar

[11]

P. Gerlee and S. Nelander, The Impact of Phenotypic Switching on Glioblastoma Growth and Invasion,, PLOS Computational Biology, 8 (2012). doi: 10.1371/journal.pcbi.1002556. Google Scholar

[12]

P. Gerlee and S. Nelander, Travelling wave analysis of a mathematical model of glioblastoma growth,, preprint, (). Google Scholar

[13]

S. G. Giatili and G. S. Stamatakos, A detailed numerical treatment of the boundary conditions imposed by the skull on a diffusion-reaction model of glioma tumor growth. Clinical validation aspects,, Applied Mathematics and Computation, 218 (2012), 8779. doi: 10.1016/j.amc.2012.02.036. Google Scholar

[14]

B. H. Gilding and R. Kersner, The Characterization of Reaction-Convection-Diffusion Processes by Travelling Waves,, Journal of differential equations, 124 (1996), 27. doi: 10.1006/jdeq.1996.0002. Google Scholar

[15]

B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion Convection Reaction,, Birkhäuser, (2004). doi: 10.1007/978-3-0348-7964-4. Google Scholar

[16]

V. V. Golubev, Vorlesungen über Differentialgleichungen im Komplexen,, Deutsch. Verlag Wissenschaft., (1958). Google Scholar

[17]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Computers and Mathematics with Applications, 46 (2003), 849. doi: 10.1016/S0898-1221(03)90147-7. Google Scholar

[18]

T. Harko, F. S. N. Lobo and M. K. Mak, Exact analytical solutions of the Susceptible-Infected- Recovered (SIR) epidemic model and of the SIR model with equal deaths and births,, Applied Mathematics and Computation, 236 (2014), 184. doi: 10.1016/j.amc.2014.03.030. Google Scholar

[19]

T. Harko, F. S. N. Lobo and M. K. Mak, A Chiellini type integrability condition for the generalized first kind Abel differential equation,, Universal Journal of Applied Mathematics, 1 (2013), 101. Google Scholar

[20]

T. Harko, F. S. N. Lobo and M. K. Mak, A class of exact solutions of the Liénard type ordinary non-linear differential equation,, Journal of Engineering Mathematics, (). Google Scholar

[21]

H. L. P. Harpold, E. C. Alvord, Jr. and K. R. Swanson, The Evolution of Mathematical Modeling of Glioma Proliferation and Invasion,, J Neuropathol Exp Neurol, 66 (2007), 1. doi: 10.1097/nen.0b013e31802d9000. Google Scholar

[22]

H. Hatzikirou, L. Brusch, K. Schaller, M. Simon and A. Deutsch, Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion,, Computers and Mathematics with Applications, 59 (2010), 2326. doi: 10.1016/j.camwa.2009.08.041. Google Scholar

[23]

H. Hatzikirou, D. Basanta, M. Simon, K. Schaller and A. Deutsch, "Go or Grow": the key to the emergence of invasion in tumour progression?,, Mathematical Medicine and Biology, 29 (2012), 49. doi: 10.1093/imammb/dqq011. Google Scholar

[24]

P. Hinow, P. Gerlee, L. J. McCawley, V. Quaranta, M. Ciobanu, S. Wang, J. M. Graham, B. P. Ayati, J. Claridge, K. R. Swanson, M. Loveless and A. R. A. Anderson, A Spatial Model of Tumor-Host Interaction: Application of Chemotherapy,, Math. Biosci. Eng., 6 (2009), 521. doi: 10.3934/mbe.2009.6.521. Google Scholar

[25]

S. Jbabdi, E. Mandonnet, H. Duffau, L. Capelle, K. R. Swanson, M. Pélégrini-Issac, R. Guillevin and H. Benali, Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging,, Magnetic Resonance in Medicine, 54 (2005), 616. doi: 10.1002/mrm.20625. Google Scholar

[26]

S. Joannès, L. Mazé and A. R. Bunsell, A concentration-dependent diffusion coefficient model for water sorption in composite,, Composite Structures, 108 (2014), 111. Google Scholar

[27]

D. R. Johnson and B. P. O'Neill, Glioblastoma survival in the United States before and during the temozolomide era,, Journal of Neurooncology, 107 (2012), 359. doi: 10.1007/s11060-011-0749-4. Google Scholar

[28]

M. Kinoshita, N. Hashimoto, T. Goto, N. Kagawa, H. Kishima, S. Izumoto, H. Tanaka, N. Fujita and T. Yoshimine, NeuroImage,, 43 (2008), 43 (2008), 29. Google Scholar

[29]

E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen,, Chelsea, (1959). Google Scholar

[30]

A. Kolmogorov, I. Petrovskii and N. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application a un problème biologique,, Bulletin de l'Université d'État à Moscou, 1 (1937), 1. Google Scholar

[31]

H. Lemke, Über eine von R. Liouville untersuchte Differentialgleichung erster Ordnung,, Sitzungs. Berl. Math. Ges., 18 (1920), 26. Google Scholar

[32]

C. K. N. Li, The glucose distribution in 9L rat brain multicell tumour spheroids and its effect on cell necrosis,, Cancer, 50 (1982), 2066. Google Scholar

[33]

D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet, B. W. Scheithauer and P. Kleihues, The 2007 WHO Classification of Tumours of the Central Nervous System,, Acta Neuropathol., 114 (2007), 97. doi: 10.1007/s00401-007-0243-4. Google Scholar

[34]

M. K. Mak, H. W. Chan and T. Harko, Solutions generating technique for Abel type non-linear ordinary differential equations,, Computers and Mathematics with Applications, 41 (2001), 1395. doi: 10.1016/S0898-1221(01)00104-3. Google Scholar

[35]

M. K. Mak and T. Harko, New method for generating general solution of Abel differential equations,, Computers and Mathematics with Applications, 43 (2002), 91. doi: 10.1016/S0898-1221(01)00274-7. Google Scholar

[36]

S. C. Mancas and H. C. Rosu, Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations,, Physics Letters, A 377 (2013), 1234. doi: 10.1016/j.physleta.2013.04.024. Google Scholar

[37]

S. C. Mancas and H. C. Rosu, Integrable Ermakov-Pinney equations with nonlinear Chiellini 'damping',, preprint, (). Google Scholar

[38]

S. C. Mancas, G. Spradlin and H. Khanal, Weierstrass traveling wave solutions for dissipative Benjamin, Bona, and Mahony (BBM) equation,, Journal of Mathematical Physics, 54 (2013). doi: 10.1063/1.4817342. Google Scholar

[39]

E. Mandonnet, J.-Y. Delattre, M.-L. Tanguy, K. R. Swanson, A. F. Carpentier, H. Duffau, P. Cornu, R. Van Effenterre, E. C. Alvord. Jr. and L. Capelle, Continuous growth of mean tumor diameter in a subset of grade II gliomas,, Annals of Neurology, 53 (2003), 524. Google Scholar

[40]

D. C. Markham, M. J. Simpson, P. K. Maini, E. A. Gaffney and R. E. Baker, Comparing methods for modelling spreading cell fronts,, Journal of Theoretical Biology, 353 (2014), 95. doi: 10.1016/j.jtbi.2014.02.023. Google Scholar

[41]

A. Martínez-González, G. F. Calvo, L. A. Pérez Romasanta and V. M. Pérez-García, Hypoxic Cell Waves Around Necrotic Cores in Glioblastoma: A Biomathematical Model and Its Therapeutic Implications,, Bulletin of Mathematical Biology, 74 (2012), 2875. doi: 10.1007/s11538-012-9786-1. Google Scholar

[42]

M. Marusic, Z. Bajzer, J. P. Freyer and S. Vuk-Palovic, Analysis of growth of multicellular tumour spheroids by mathematical models,, Cell Prolif, 27 (1994), 73. Google Scholar

[43]

A. Matzavinos and M. A. J. Chaplain, Traveling-wave analysis of a model of the immune response to cancer, 2004,, C. R. Biologies, 327 (2004), 995. Google Scholar

[44]

E. Mehrara, E. Forssell-Aronsson, H. Ahlman and P. Bernhardt, Quantitative analysis of tumor growth rate and changes in tumor marker level: Specific growth rate versus doubling time,, Acta Oncologica, 48 (2009), 591. doi: 10.1080/02841860802616736. Google Scholar

[45]

J. D. Murray, On travelling wave solutions in a model for the Belousov-Zhabotinskii reaction,, Journal of Theoretical Biology, 56 (1976), 329. doi: 10.1016/S0022-5193(76)80078-1. Google Scholar

[46]

J. D. Murray, Mathematical Biology,, 3rd ed, (2002). doi: 10.1007/b98869. Google Scholar

[47]

B. Perthame, M. Tang and N. Vauchelet, Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient,, Math. Models Methods Appl. Sci., 24 (2014), 2601. doi: 10.1142/S0218202514500316. Google Scholar

[48]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations,, Chapman & Hall/CRC, (2003). Google Scholar

[49]

R. Rockne, E. C. Alvord Jr., J. K. Rockhill and K. R. Swanson, A mathematical model for brain tumor response to radiation therapy,, J. Math. Biol., 58 (2009), 561. doi: 10.1007/s00285-008-0219-6. Google Scholar

[50]

A. M. Samsonov, On exact quasistationary solutions to a nonlinear reaction-diffusion equation,, Physics Letters A, 245 (1998), 527. doi: 10.1016/S0375-9601(98)00458-7. Google Scholar

[51]

D. L. Silbergeld, R. C. Rostomily and E. C. Alvord Jr., The cause of death in patients with glioblastoma is multifactorial: clinical factors and autopsy findings in 117 cases of supratentorial glioblastoma in adults,, Journal of Neuro-Oncology, 10 (1991), 179. doi: 10.1007/BF00146880. Google Scholar

[52]

H. E. Skipper, F. M. Schabel and H. H. Lloyd, Dose-response and tumor cell repopulation rate in chemotherapeutic trials,, Adv. Cancer Chemother., 1 (1979), 205. Google Scholar

[53]

A. Solovyova, P. Schuck, L. Costenaro and C. Ebel, Non-Ideality by Sedimentation Velocity of Halophilic Malate Dehydrogenase in Complex Solvents,, Biophysical Journal, 81 (2001), 1868. doi: 10.1016/S0006-3495(01)75838-9. Google Scholar

[54]

A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, A Mathematical Model of Glioblastoma Tumor Spheroid Invasion in a Three-Dimensional In Vitro Experiment,, Biophysical Journal, 92 (2007), 356. doi: 10.1529/biophysj.106.093468. Google Scholar

[55]

K. R. Swanson, C. Bridgea, J. D. Murray and E. C. Alvord Jr., Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion,, Journal of the Neurological Sciences, 216 (2003), 1. doi: 10.1016/j.jns.2003.06.001. Google Scholar

[56]

K. R. Swanson and E. C. Alvord Jr., The concept of gliomas as a travelling wave - application of a mathematical model to high - and low-grade gliomas,, Can J Neurol Sci, 29 (2002). Google Scholar

[57]

P. Tracqui, G. C. Cruywagen, D. E. Woodward, G. T. Bartooll, J. D. Murray and E. C. Alvord, Jr., A mathematical model of glioma growth: The effect of chemotherapy on spatio-temporal growth,, Cell Prolif., 28 (1995), 17. doi: 10.1111/j.1365-2184.1995.tb00036.x. Google Scholar

[58]

P. Y. Wen and S. Kesari, Malignant Gliomas in Adults,, The New England Journal of Medicine, 359 (2008), 492. doi: 10.1056/NEJMra0708126. Google Scholar

[59]

G. B. West, J. H. Brown and B. J. Enquist, A general model for ontogenetic growth,, Nature, 413 (2001), 628. doi: 10.1038/35098076. Google Scholar

[60]

D. E. Woodward, J. Cook, P. Tracqui, G. C. Cruywagen, J. D. Murray and E. C. Alvord, Jr., A mathematical model of glioma growth: The effect of extent of surgical resection,, Cell. Prolif., 29 (1996), 269. doi: 10.1111/j.1365-2184.1996.tb01580.x. Google Scholar

[61]

E. D. Yorke, Z. Fuks, L. Norton, V. Whitmore and C. C. Ling, Modeling the Development of Metastases from Primary and Locally Recurrent Tumors: Comparison with a Clinical Data Base for Prostatic Cancer,, Cancer Research, 53 (1993), 2987. Google Scholar

[1]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[2]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[3]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[4]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[5]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[6]

Rui Li, Yuan Lou. Some monotone properties for solutions to a reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4445-4455. doi: 10.3934/dcdsb.2019126

[7]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[8]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[9]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[10]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[11]

Feng-Bin Wang. A periodic reaction-diffusion model with a quiescent stage. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 283-295. doi: 10.3934/dcdsb.2012.17.283

[12]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[13]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[14]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[15]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[16]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[17]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[18]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[19]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687

[20]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]