2015, 12(6): 1277-1288. doi: 10.3934/mbe.2015.12.1277

Oncogene-tumor suppressor gene feedback interactions and their control

1. 

DiseasePathways LLC, Bethesda, Maryland, 20814, United States

2. 

Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis St., #02-01 Genome, 138672, Singapore

3. 

Department of Life Science & Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, China-Yi, Taiwan

Received  September 2014 Revised  March 2015 Published  August 2015

We propose the hypothesis that for a particular type of cancer there exists a key pair of oncogene (OCG) and tumor suppressor gene (TSG) that is normally involved in strong stabilizing negative feedback loops (nFBLs) of molecular interactions, and it is these interactions that are sufficiently perturbed during cancer development. These nFBLs are thought to regulate oncogenic positive feedback loops (pFBLs) that are often required for the normal cellular functions of oncogenes. Examples given in this paper are the pairs of MYC and p53, KRAS and INK4A, and E2F1 and miR-17-92. We propose dynamical models of the aforementioned OCG-TSG interactions and derive stability conditions of the steady states in terms of strengths of cycles in the qualitative interaction network. Although these conditions are restricted to predictions of local stability, their simple linear expressions in terms of competing nFBLs and pFBLs make them intuitive and practical guides for experimentalists aiming to discover drug targets and stabilize cancer networks.
Citation: Baltazar D. Aguda, Ricardo C.H. del Rosario, Michael W.Y. Chan. Oncogene-tumor suppressor gene feedback interactions and their control. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1277-1288. doi: 10.3934/mbe.2015.12.1277
References:
[1]

B. D. Aguda, Network pharmacology of glioblastoma,, Curr Drug Discov Technol., 10 (2013), 125. Google Scholar

[2]

B. D. Aguda, The significance of the feedback loops between KRas and Ink4a in pancreatic cancer,, in Molecular Diagnostics and Therapy of Pancreatic Cancer (ed. A. Azmi), (2014), 281. doi: 10.1016/B978-0-12-408103-1.00012-1. Google Scholar

[3]

B. D. Aguda and A. B. Goryachev, From pathways databases to network models of switching behavior,, PLoS Comput Biol., 3 (2007), 1674. doi: 10.1371/journal.pcbi.0030152. Google Scholar

[4]

B. D. Aguda, Y. Kim, H. S. Kim, A. Friedman and H. A. Fine, Qualitative network modeling of the Myc-p53 control system of cell proliferation and differentiation,, Biophys J., 101 (2011), 2082. doi: 10.1016/j.bpj.2011.09.052. Google Scholar

[5]

B. D. Aguda, Y. Kim, M. G. Piper-Hunter, A. Friedman and C. B. Marsh, MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F and Myc,, Proc Natl Acad Sci USA, 105 (2008), 19678. doi: 10.1073/pnas.0811166106. Google Scholar

[6]

R. C. Bast, B. Henessy and G. B. Mills, Jr., The biology of ovarian cancer: New opportunities for translation,, Nat Rev Cancer, 9 (2009), 415. Google Scholar

[7]

Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways,, Nature, 494 (2013). doi: 10.1038/nature11903. Google Scholar

[8]

Cancer Genome Atlas Research Network, Comprehensive molecular profiling of lung adenocarcinoma,, Nature, 511 (2014), 543. Google Scholar

[9]

W. A. Cooper, D. C. Lam, S. A. O'Toole and J. D. Minna, Molecular biology of lung cancer,, J Thorac Dis., 5 (2013). Google Scholar

[10]

J. Daniluk, Y. Liu, D. Deng, J. Chu, H. Huang, S. Gaiser, Z. Cruz-Monserrate, H. Wang, B. Ji and C. D. Logsdon, An NF-$\kappa$B pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice,, J Clin Invest., 122 (2012), 1519. Google Scholar

[11]

A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A Matlab package for numerical bifurcation analysis of ODEs,, ACM Trans Math Softw (TOMS), 29 (2003), 141. doi: 10.1145/779359.779362. Google Scholar

[12]

J. Drost and R. Agami, Transformation locked in a loop,, Cell, 139 (2009), 654. doi: 10.1016/j.cell.2009.10.035. Google Scholar

[13]

P. A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman and M. R. Stratton, A census of human cancer genes,, Nat Rev Cancer, 4 (2004), 177. doi: 10.1038/nrc1299. Google Scholar

[14]

P. K. Ha, S. S. Chang, C. A. Glazer, J. A. Califano and D. Sidransky, Molecular techniques and genetic alterations in head and neck cancer,, Oral Oncol, 45 (2009), 335. doi: 10.1016/j.oraloncology.2008.05.015. Google Scholar

[15]

http://cancer.sanger.ac.uk/cancergenome/projects/census/" target="_blank">Google Scholar

[16]

http://ncg.kcl.ac.uk, (network of cancer genes)., (). Google Scholar

[17]

C. Kandoth, M. D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang, J. F. McMichael, M. A. Wyczalkowski, M. D. Leiserson, C. A. Miller, J. S. Welch, M. J. Walter, M. C. Wendl, T. J. Ley, R. K. Wilson, B. J. Raphael and L. Ding, Mutational landscape and significance across 12 major cancer types,, Nature, 502 (2013), 333. Google Scholar

[18]

J. E. Larsen and J. D. Minna, Molecular biology of lung cancer: Clinical applications,, Clin Chest Med., 32 (2011), 703. doi: 10.1016/j.ccm.2011.08.003. Google Scholar

[19]

E. Y. Lee and W. J. Muller, Oncogenes and tumor suppressor genes,, Cold Spring Harb Perpect Biol., 2 (2010). doi: 10.1101/cshperspect.a003236. Google Scholar

[20]

Y. Li, Y. Li, H. Zhang and Y. Chen, MicroRNA-mediated positive feedback loop and optimized bistable switch in a cancer network involving miR-17-92,, PLoS One, 6 (2011). doi: 10.1371/journal.pone.0026302. Google Scholar

[21]

P. Liao, W. Wang, M. Shen, W. Pan, K. Zhang, R. Wang, T. Chen, Y. Chen, H. Chen and P. Wang, A positive feedback loop between EBP2 and c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis,, Cell Death Dis., 5 (2014). doi: 10.1038/cddis.2013.536. Google Scholar

[22]

L. Mao, W. K. Hong and V. A. Papadimitrakopoulou, Focus on head and neck cancer,, Cancer Cell, 5 (2004), 311. doi: 10.1016/S1535-6108(04)00090-X. Google Scholar

[23]

G. M. Marshall, P. Y. Liu, S. Gherardi, C. J. Scarlett, A. Bedalov, N. Xu, N. Iraci, E. Valli, D. Ling, W. Thomas, M. van Bekkum, E. Sekyere, K. Jankowski, T. Trahair, K. L. Mackenzie, M. Haber, M. D. Norris, A. V. Biankin, G. Perini and T. Liu, SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability,, PLoS Genet., 7 (2011). doi: 10.1371/journal.pgen.1002135. Google Scholar

[24]

K. Nowak, K. Kerl, D. Fehr, C. Kramps, C. Gessner, K. Killmer, B. Samans, B. Berwanger, H. Christiansen and W. Lutz, BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas,, Nucleic Acids Res., 34 (2006), 1745. doi: 10.1093/nar/gkl119. Google Scholar

[25]

B. Perez-Ordoñez, M. Beauchemin and R. C. Jordan, Molecular biology of squamous cell carcinoma of the head and neck,, J Clin Pathol., 59 (2006), 445. Google Scholar

[26]

C. C. Pritchard and W. M. Grady, Colorectal cancer molecular biology moves into clinical practice,, Gut., 60 (2011), 116. doi: 10.1136/gut.2009.206250. Google Scholar

[27]

T. Santarius, J. Shipley, D. Brewer, M. R. Stratton and C. S. Cooper, A census of amplified and overexpressed human cancer genes,, Nat Rev Cancer, 10 (2010), 59. doi: 10.1038/nrc2771. Google Scholar

[28]

K. Tago, M. Funakoshi-Tago, H. Itoh, Y. Furukawa, J. Kikuchi, T. Kato, K. Suzuki and K. Yanagisawa, Arf tumor suppressor disrupts the oncogenic positive feedback loop including c-Myc and DDX5,, Oncogene, 34 (2015), 314. doi: 10.1038/onc.2013.561. Google Scholar

[29]

P. Takahashi, A. Polson and D. Reisman, Elevated transcription of the p53 gene in early S-phase leads to a rapid DNA-damage response during S-phase of the cell cycle,, Apoptosis, 16 (2011), 950. doi: 10.1007/s10495-011-0623-z. Google Scholar

[30]

D. Tamborero, A. Gonzalez-Perez, C. Perez-Llamas, J. Deu-Pons, C. Kandoth, J. Reimand, M. S. Lawrence, G. Getz, G. D. Bader, L. Ding and N. Lopez-Bigas, Comprehensive identification of mutational cancer driver genes across 12 tumor types,, Sci Rep., 3 (2013). doi: 10.1038/srep02650. Google Scholar

[31]

M. Vauhkonen, H. Vauhkonen and P. Sipponen, Pathology and molecular biology of gastric cancer,, Best Pract Res Clin Gastroenterol, 20 (2006), 651. doi: 10.1016/j.bpg.2006.03.016. Google Scholar

show all references

References:
[1]

B. D. Aguda, Network pharmacology of glioblastoma,, Curr Drug Discov Technol., 10 (2013), 125. Google Scholar

[2]

B. D. Aguda, The significance of the feedback loops between KRas and Ink4a in pancreatic cancer,, in Molecular Diagnostics and Therapy of Pancreatic Cancer (ed. A. Azmi), (2014), 281. doi: 10.1016/B978-0-12-408103-1.00012-1. Google Scholar

[3]

B. D. Aguda and A. B. Goryachev, From pathways databases to network models of switching behavior,, PLoS Comput Biol., 3 (2007), 1674. doi: 10.1371/journal.pcbi.0030152. Google Scholar

[4]

B. D. Aguda, Y. Kim, H. S. Kim, A. Friedman and H. A. Fine, Qualitative network modeling of the Myc-p53 control system of cell proliferation and differentiation,, Biophys J., 101 (2011), 2082. doi: 10.1016/j.bpj.2011.09.052. Google Scholar

[5]

B. D. Aguda, Y. Kim, M. G. Piper-Hunter, A. Friedman and C. B. Marsh, MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F and Myc,, Proc Natl Acad Sci USA, 105 (2008), 19678. doi: 10.1073/pnas.0811166106. Google Scholar

[6]

R. C. Bast, B. Henessy and G. B. Mills, Jr., The biology of ovarian cancer: New opportunities for translation,, Nat Rev Cancer, 9 (2009), 415. Google Scholar

[7]

Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways,, Nature, 494 (2013). doi: 10.1038/nature11903. Google Scholar

[8]

Cancer Genome Atlas Research Network, Comprehensive molecular profiling of lung adenocarcinoma,, Nature, 511 (2014), 543. Google Scholar

[9]

W. A. Cooper, D. C. Lam, S. A. O'Toole and J. D. Minna, Molecular biology of lung cancer,, J Thorac Dis., 5 (2013). Google Scholar

[10]

J. Daniluk, Y. Liu, D. Deng, J. Chu, H. Huang, S. Gaiser, Z. Cruz-Monserrate, H. Wang, B. Ji and C. D. Logsdon, An NF-$\kappa$B pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice,, J Clin Invest., 122 (2012), 1519. Google Scholar

[11]

A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A Matlab package for numerical bifurcation analysis of ODEs,, ACM Trans Math Softw (TOMS), 29 (2003), 141. doi: 10.1145/779359.779362. Google Scholar

[12]

J. Drost and R. Agami, Transformation locked in a loop,, Cell, 139 (2009), 654. doi: 10.1016/j.cell.2009.10.035. Google Scholar

[13]

P. A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman and M. R. Stratton, A census of human cancer genes,, Nat Rev Cancer, 4 (2004), 177. doi: 10.1038/nrc1299. Google Scholar

[14]

P. K. Ha, S. S. Chang, C. A. Glazer, J. A. Califano and D. Sidransky, Molecular techniques and genetic alterations in head and neck cancer,, Oral Oncol, 45 (2009), 335. doi: 10.1016/j.oraloncology.2008.05.015. Google Scholar

[15]

http://cancer.sanger.ac.uk/cancergenome/projects/census/" target="_blank">Google Scholar

[16]

http://ncg.kcl.ac.uk, (network of cancer genes)., (). Google Scholar

[17]

C. Kandoth, M. D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang, J. F. McMichael, M. A. Wyczalkowski, M. D. Leiserson, C. A. Miller, J. S. Welch, M. J. Walter, M. C. Wendl, T. J. Ley, R. K. Wilson, B. J. Raphael and L. Ding, Mutational landscape and significance across 12 major cancer types,, Nature, 502 (2013), 333. Google Scholar

[18]

J. E. Larsen and J. D. Minna, Molecular biology of lung cancer: Clinical applications,, Clin Chest Med., 32 (2011), 703. doi: 10.1016/j.ccm.2011.08.003. Google Scholar

[19]

E. Y. Lee and W. J. Muller, Oncogenes and tumor suppressor genes,, Cold Spring Harb Perpect Biol., 2 (2010). doi: 10.1101/cshperspect.a003236. Google Scholar

[20]

Y. Li, Y. Li, H. Zhang and Y. Chen, MicroRNA-mediated positive feedback loop and optimized bistable switch in a cancer network involving miR-17-92,, PLoS One, 6 (2011). doi: 10.1371/journal.pone.0026302. Google Scholar

[21]

P. Liao, W. Wang, M. Shen, W. Pan, K. Zhang, R. Wang, T. Chen, Y. Chen, H. Chen and P. Wang, A positive feedback loop between EBP2 and c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis,, Cell Death Dis., 5 (2014). doi: 10.1038/cddis.2013.536. Google Scholar

[22]

L. Mao, W. K. Hong and V. A. Papadimitrakopoulou, Focus on head and neck cancer,, Cancer Cell, 5 (2004), 311. doi: 10.1016/S1535-6108(04)00090-X. Google Scholar

[23]

G. M. Marshall, P. Y. Liu, S. Gherardi, C. J. Scarlett, A. Bedalov, N. Xu, N. Iraci, E. Valli, D. Ling, W. Thomas, M. van Bekkum, E. Sekyere, K. Jankowski, T. Trahair, K. L. Mackenzie, M. Haber, M. D. Norris, A. V. Biankin, G. Perini and T. Liu, SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability,, PLoS Genet., 7 (2011). doi: 10.1371/journal.pgen.1002135. Google Scholar

[24]

K. Nowak, K. Kerl, D. Fehr, C. Kramps, C. Gessner, K. Killmer, B. Samans, B. Berwanger, H. Christiansen and W. Lutz, BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas,, Nucleic Acids Res., 34 (2006), 1745. doi: 10.1093/nar/gkl119. Google Scholar

[25]

B. Perez-Ordoñez, M. Beauchemin and R. C. Jordan, Molecular biology of squamous cell carcinoma of the head and neck,, J Clin Pathol., 59 (2006), 445. Google Scholar

[26]

C. C. Pritchard and W. M. Grady, Colorectal cancer molecular biology moves into clinical practice,, Gut., 60 (2011), 116. doi: 10.1136/gut.2009.206250. Google Scholar

[27]

T. Santarius, J. Shipley, D. Brewer, M. R. Stratton and C. S. Cooper, A census of amplified and overexpressed human cancer genes,, Nat Rev Cancer, 10 (2010), 59. doi: 10.1038/nrc2771. Google Scholar

[28]

K. Tago, M. Funakoshi-Tago, H. Itoh, Y. Furukawa, J. Kikuchi, T. Kato, K. Suzuki and K. Yanagisawa, Arf tumor suppressor disrupts the oncogenic positive feedback loop including c-Myc and DDX5,, Oncogene, 34 (2015), 314. doi: 10.1038/onc.2013.561. Google Scholar

[29]

P. Takahashi, A. Polson and D. Reisman, Elevated transcription of the p53 gene in early S-phase leads to a rapid DNA-damage response during S-phase of the cell cycle,, Apoptosis, 16 (2011), 950. doi: 10.1007/s10495-011-0623-z. Google Scholar

[30]

D. Tamborero, A. Gonzalez-Perez, C. Perez-Llamas, J. Deu-Pons, C. Kandoth, J. Reimand, M. S. Lawrence, G. Getz, G. D. Bader, L. Ding and N. Lopez-Bigas, Comprehensive identification of mutational cancer driver genes across 12 tumor types,, Sci Rep., 3 (2013). doi: 10.1038/srep02650. Google Scholar

[31]

M. Vauhkonen, H. Vauhkonen and P. Sipponen, Pathology and molecular biology of gastric cancer,, Best Pract Res Clin Gastroenterol, 20 (2006), 651. doi: 10.1016/j.bpg.2006.03.016. Google Scholar

[1]

Orit Lavi, Doron Ginsberg, Yoram Louzoun. Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences & Engineering, 2011, 8 (2) : 445-461. doi: 10.3934/mbe.2011.8.445

[2]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[3]

Karim Samei, Arezoo Soufi. Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[4]

Maria Conceição A. Leite, Yunjiao Wang. Multistability, oscillations and bifurcations in feedback loops. Mathematical Biosciences & Engineering, 2010, 7 (1) : 83-97. doi: 10.3934/mbe.2010.7.83

[5]

Guangkui Xu, Longjiang Qu. Two classes of differentially 4-uniform permutations over $ \mathbb{F}_{2^{n}} $ with $ n $ even. Advances in Mathematics of Communications, 2020, 14 (1) : 97-110. doi: 10.3934/amc.2020008

[6]

Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks & Heterogeneous Media, 2006, 1 (1) : 219-239. doi: 10.3934/nhm.2006.1.219

[7]

Xingbo Liu, Deming Zhu. On the stability of homoclinic loops with higher dimension. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 915-932. doi: 10.3934/dcdsb.2012.17.915

[8]

R.D.S. Oliveira, F. Tari. On pairs of differential $1$-forms in the plane. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 519-536. doi: 10.3934/dcds.2000.6.519

[9]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[10]

Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control & Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1

[11]

Frédéric Vanhove. A geometric proof of the upper bound on the size of partial spreads in $H(4n+1,$q2$)$. Advances in Mathematics of Communications, 2011, 5 (2) : 157-160. doi: 10.3934/amc.2011.5.157

[12]

Henk W. Broer, Heinz Hanssmann. A Galilean dance 1:2:4 resonant periodic motions and their librations of Jupiter and his Galilean moons. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-17. doi: 10.3934/dcdss.2020062

[13]

Qingqing Li, Tianshou Zhou. Interlocked multi-node positive and negative feedback loops facilitate oscillations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3139-3155. doi: 10.3934/dcdsb.2018304

[14]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[15]

Lijia Yan. Some properties of a class of $(F,E)$-$G$ generalized convex functions. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 615-625. doi: 10.3934/naco.2013.3.615

[16]

Peter Dormayer, Anatoli F. Ivanov. Stability of symmetric periodic solutions with small amplitude of $\dot x(t)=\alpha f(x(t), x(t-1))$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 61-82. doi: 10.3934/dcds.1999.5.61

[17]

Juan Sánchez, Marta Net, José M. Vega. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1357-1380. doi: 10.3934/dcdsb.2006.6.1357

[18]

Evangeline P. Bautista, Philippe Gaborit, Jon-Lark Kim, Judy L. Walker. s-extremal additive $\mathbb F_4$ codes. Advances in Mathematics of Communications, 2007, 1 (1) : 111-130. doi: 10.3934/amc.2007.1.111

[19]

W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309

[20]

W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2007, 1 (4) : 427-459. doi: 10.3934/amc.2007.1.427

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]