2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785

Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate

1. 

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914, Japan

2. 

Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1, Hungary

Received  April 2013 Revised  September 2013 Published  March 2014

We analyze local asymptotic stability of an SIRS epidemic model with a distributed delay. The incidence rate is given by a general saturated function of the number of infective individuals. Our first aim is to find a class of nonmonotone incidence rates such that a unique endemic equilibrium is always asymptotically stable. We establish a characterization for the incidence rate, which shows that nonmonotonicity with delay in the incidence rate is necessary for destabilization of the endemic equilibrium. We further elaborate the stability analysis for a specific incidence rate. Here we improve a stability condition obtained in [Y. Yang and D. Xiao, Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models, Disc. Cont. Dynam. Sys. B 13 (2010) 195-211], which is illustrated in a suitable parameter plane. Two-parameter plane analysis together with an application of the implicit function theorem facilitates us to obtain an exact stability condition. It is proven that as increasing a parameter, measuring saturation effect, the number of infective individuals at the endemic steady state decreases, while the equilibrium can be unstable via Hopf bifurcation. This can be interpreted as that reducing a contact rate may cause periodic oscillation of the number of infective individuals, thus disease can not be eradicated completely from the host population, though the level of the endemic equilibrium for the infective population decreases. Numerical simulations are performed to illustrate our theoretical results.
Citation: Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences & Engineering, 2014, 11 (4) : 785-805. doi: 10.3934/mbe.2014.11.785
References:
[1]

E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay,, Nonlinear Analysis, 47 (2001), 4107. doi: 10.1016/S0362-546X(01)00528-4. Google Scholar

[2]

E. Beretta and D. Breda, An SEIR epidemic model with constant latency time and infectious period,, Math. Biosci. Eng., 8 (2011), 931. doi: 10.3934/mbe.2011.8.931. Google Scholar

[3]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43. doi: 10.1016/0025-5564(78)90006-8. Google Scholar

[4]

K. L. Cooke, Stability analysis for a vector disease model,, Rocky Mountain J. Math., 9 (1979), 31. doi: 10.1216/RMJ-1979-9-1-31. Google Scholar

[5]

O. Diekmann and K. Korvasova, A didactical note on the advantage of using two parameters in Hopf bifurcation studies,, J. Biological Dynamics, 7 (2013), 21. doi: 10.1080/17513758.2012.760758. Google Scholar

[6]

O. Diekmann, S. A. van Gils, S. M. V. Lunel and H. O. Walther, Delay Equations Functional, Complex and Nonlinear Analysis,, Applied Mathematical Sciences, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[7]

Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model,, Nonlinear Anal. RWA., 13 (2012), 2120. doi: 10.1016/j.nonrwa.2012.01.007. Google Scholar

[8]

Y. Enatsu, Y. Nakata and Y. Muroya, Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 61. doi: 10.3934/dcdsb.2011.15.61. Google Scholar

[9]

F. R. Gantmacher, The Theory of Matrices, Vol. 2,, Chelsea, (1959). Google Scholar

[10]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence,, J. Math. Biol., 29 (1991), 271. doi: 10.1007/BF00160539. Google Scholar

[11]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599. doi: 10.1137/S0036144500371907. Google Scholar

[12]

G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamics models with nonlinear incidence,, J. Math. Biol., 63 (2011), 125. doi: 10.1007/s00285-010-0368-2. Google Scholar

[13]

Z. Hu, P. Bi, W. Ma and S. Ruan, Bifurcation of an SIRS epidemic model with nonlinear incidence rate,, Disc. Cont. Dynam. Sys. B, 15 (2011), 93. doi: 10.3934/dcdsb.2011.15.93. Google Scholar

[14]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar

[15]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: 10.1007/s11538-005-9037-9. Google Scholar

[16]

A. Korobeinikov and P. K. Maini, Non-linear incidence and stability of infectious disease models,, Math. Med. Biol., 22 (2005), 113. doi: 10.1093/imammb/dqi001. Google Scholar

[17]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[18]

Y. N. Kyrychko and K. B. Blyuss, Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate,, Nonlinear Anal. RWA., 6 (2005), 495. doi: 10.1016/j.nonrwa.2004.10.001. Google Scholar

[19]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,, J. Math. Biol., 23 (1986), 187. doi: 10.1007/BF00276956. Google Scholar

[20]

W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates,, J. Math. Biol., 25 (1987), 359. doi: 10.1007/BF00277162. Google Scholar

[21]

C. C. McCluskey, Global stability of an SIR epidemic model with delay and general incidence,, Math. Biosci. Eng., 7 (2010), 837. doi: 10.3934/mbe.2010.7.837. Google Scholar

[22]

Y. Muroya, Y. Enatsu and Y. Nakata, Monotone iterative techniques to SIRS epidemic models with nonlinear incidence rates and distributed delays,, Nonlinear Anal. RWA., 12 (2011), 1897. doi: 10.1016/j.nonrwa.2010.12.002. Google Scholar

[23]

Y. Nakata, Y. Enatsu and Y. Muroya, On the global stability of an SIRS epidemic model with distributed delays,, Disc. Cont. Dynam. Sys. Supplement, II (2011), 1119. Google Scholar

[24]

W. Rudin, Principles of Mathematical Analysis,, 3rd ed., (1976). Google Scholar

[25]

S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate,, J. Differ. Equations, 188 (2003), 135. doi: 10.1016/S0022-0396(02)00089-X. Google Scholar

[26]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences,, Texts in Applied Mathematics Vol. 57, (2011). doi: 10.1007/978-1-4419-7646-8. Google Scholar

[27]

Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delayed SIR epidemic model with finite incubation time,, Nonlinear Anal. TMA., 42 (2000), 931. doi: 10.1016/S0362-546X(99)00138-8. Google Scholar

[28]

W. Wang, Epidemic models with nonlinear infection forces,, Math. Biosci. Eng., 3 (2006), 267. doi: 10.3934/mbe.2006.3.267. Google Scholar

[29]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate,, Math. Biosci., 208 (2007), 419. doi: 10.1016/j.mbs.2006.09.025. Google Scholar

[30]

R. Xu and Z. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate,, Chaos, 41 (2009), 2319. doi: 10.1016/j.chaos.2008.09.007. Google Scholar

[31]

Y. Yang and D. Xiao, Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models,, Disc. Cont. Dynam. Sys. B, 13 (2010), 195. doi: 10.3934/dcdsb.2010.13.195. Google Scholar

show all references

References:
[1]

E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay,, Nonlinear Analysis, 47 (2001), 4107. doi: 10.1016/S0362-546X(01)00528-4. Google Scholar

[2]

E. Beretta and D. Breda, An SEIR epidemic model with constant latency time and infectious period,, Math. Biosci. Eng., 8 (2011), 931. doi: 10.3934/mbe.2011.8.931. Google Scholar

[3]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43. doi: 10.1016/0025-5564(78)90006-8. Google Scholar

[4]

K. L. Cooke, Stability analysis for a vector disease model,, Rocky Mountain J. Math., 9 (1979), 31. doi: 10.1216/RMJ-1979-9-1-31. Google Scholar

[5]

O. Diekmann and K. Korvasova, A didactical note on the advantage of using two parameters in Hopf bifurcation studies,, J. Biological Dynamics, 7 (2013), 21. doi: 10.1080/17513758.2012.760758. Google Scholar

[6]

O. Diekmann, S. A. van Gils, S. M. V. Lunel and H. O. Walther, Delay Equations Functional, Complex and Nonlinear Analysis,, Applied Mathematical Sciences, (1995). doi: 10.1007/978-1-4612-4206-2. Google Scholar

[7]

Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model,, Nonlinear Anal. RWA., 13 (2012), 2120. doi: 10.1016/j.nonrwa.2012.01.007. Google Scholar

[8]

Y. Enatsu, Y. Nakata and Y. Muroya, Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 61. doi: 10.3934/dcdsb.2011.15.61. Google Scholar

[9]

F. R. Gantmacher, The Theory of Matrices, Vol. 2,, Chelsea, (1959). Google Scholar

[10]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence,, J. Math. Biol., 29 (1991), 271. doi: 10.1007/BF00160539. Google Scholar

[11]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599. doi: 10.1137/S0036144500371907. Google Scholar

[12]

G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamics models with nonlinear incidence,, J. Math. Biol., 63 (2011), 125. doi: 10.1007/s00285-010-0368-2. Google Scholar

[13]

Z. Hu, P. Bi, W. Ma and S. Ruan, Bifurcation of an SIRS epidemic model with nonlinear incidence rate,, Disc. Cont. Dynam. Sys. B, 15 (2011), 93. doi: 10.3934/dcdsb.2011.15.93. Google Scholar

[14]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y. Google Scholar

[15]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: 10.1007/s11538-005-9037-9. Google Scholar

[16]

A. Korobeinikov and P. K. Maini, Non-linear incidence and stability of infectious disease models,, Math. Med. Biol., 22 (2005), 113. doi: 10.1093/imammb/dqi001. Google Scholar

[17]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics,, Academic Press, (1993). Google Scholar

[18]

Y. N. Kyrychko and K. B. Blyuss, Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate,, Nonlinear Anal. RWA., 6 (2005), 495. doi: 10.1016/j.nonrwa.2004.10.001. Google Scholar

[19]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,, J. Math. Biol., 23 (1986), 187. doi: 10.1007/BF00276956. Google Scholar

[20]

W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates,, J. Math. Biol., 25 (1987), 359. doi: 10.1007/BF00277162. Google Scholar

[21]

C. C. McCluskey, Global stability of an SIR epidemic model with delay and general incidence,, Math. Biosci. Eng., 7 (2010), 837. doi: 10.3934/mbe.2010.7.837. Google Scholar

[22]

Y. Muroya, Y. Enatsu and Y. Nakata, Monotone iterative techniques to SIRS epidemic models with nonlinear incidence rates and distributed delays,, Nonlinear Anal. RWA., 12 (2011), 1897. doi: 10.1016/j.nonrwa.2010.12.002. Google Scholar

[23]

Y. Nakata, Y. Enatsu and Y. Muroya, On the global stability of an SIRS epidemic model with distributed delays,, Disc. Cont. Dynam. Sys. Supplement, II (2011), 1119. Google Scholar

[24]

W. Rudin, Principles of Mathematical Analysis,, 3rd ed., (1976). Google Scholar

[25]

S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate,, J. Differ. Equations, 188 (2003), 135. doi: 10.1016/S0022-0396(02)00089-X. Google Scholar

[26]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences,, Texts in Applied Mathematics Vol. 57, (2011). doi: 10.1007/978-1-4419-7646-8. Google Scholar

[27]

Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delayed SIR epidemic model with finite incubation time,, Nonlinear Anal. TMA., 42 (2000), 931. doi: 10.1016/S0362-546X(99)00138-8. Google Scholar

[28]

W. Wang, Epidemic models with nonlinear infection forces,, Math. Biosci. Eng., 3 (2006), 267. doi: 10.3934/mbe.2006.3.267. Google Scholar

[29]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate,, Math. Biosci., 208 (2007), 419. doi: 10.1016/j.mbs.2006.09.025. Google Scholar

[30]

R. Xu and Z. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate,, Chaos, 41 (2009), 2319. doi: 10.1016/j.chaos.2008.09.007. Google Scholar

[31]

Y. Yang and D. Xiao, Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models,, Disc. Cont. Dynam. Sys. B, 13 (2010), 195. doi: 10.3934/dcdsb.2010.13.195. Google Scholar

[1]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[2]

Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93

[3]

Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016

[4]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[5]

Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082

[6]

Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161

[7]

Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133

[8]

Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057

[9]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[10]

Chengzhi Li, Jianquan Li, Zhien Ma. Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1107-1116. doi: 10.3934/dcdsb.2015.20.1107

[11]

Chengxia Lei, Fujun Li, Jiang Liu. Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4499-4517. doi: 10.3934/dcdsb.2018173

[12]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[13]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[14]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61

[15]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[16]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[17]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[18]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[19]

Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134

[20]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]