2014, 11(4): 741-759. doi: 10.3934/mbe.2014.11.741

On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients

1. 

Inria, Université de Lorraine, CNRS, Institut Elie Cartan de Lorraine, UMR 7502, ISGMP Bat. A, Metz, F-57045, France, France, France

Received  January 2013 Revised  December 2013 Published  March 2014

The aim of this paper is to give a method for the estimation of total parasite burden of the patient and the rate of infection in a malaria's intra-host model by using control theory tools. More precisely, we use an auxiliary system, called observer or estimator, whose solutions tend exponentially to those of the original model. This observer uses only the available measurable data, namely, the values of peripheral infected erythrocytes. It provides estimates of the sequestered infected erythrocytes, that cannot be measured by clinical methods. Therefore this method allows to estimate the total parasite burden within a malaria patient. Moreover, our constructed observer does not use the uncertain infection rate parameter $\beta$. In fact, we derive a simple method to estimate this parameter $\beta$. We apply this estimation method using real data that have been collected when malaria was used as therapy for neurosyphilis by the US Public Health Service.
Citation: Derdei Bichara, Nathalie Cozic, Abderrahman Iggidr. On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients. Mathematical Biosciences & Engineering, 2014, 11 (4) : 741-759. doi: 10.3934/mbe.2014.11.741
References:
[1]

R. M. Anderson, R. M. May and S. Gupta, Non-linear phenomena in host-parasite interactions,, Parasitology, 99 (1989). doi: 10.1017/S0031182000083426. Google Scholar

[2]

W. E. Collins and G. M. Jeffery, A retrospective examination of sporozoite- and trophozoite-induced infections with plasmodium falciparum in patients previously infected with heterologous species of plasmodium: Effect on development of parasitologic and clinical immunity,, Am. J. Trop. Med. Hyg., 61 (1999), 36. doi: 10.4269/tropmed.1999.61-036. Google Scholar

[3]

M. Eichner, H. H. Diebner, L. Molineaux, W. E. Collins, G. M. Jeffery and K. Dietz, Genesis, sequestration and survival of plasmodium falciparum gametocytes: Parameter estimates from fitting a model to malariatherapy data,, T. Roy. Soc. Trop. Med. H., 95 (2001), 497. doi: 10.1016/S0035-9203(01)90016-1. Google Scholar

[4]

M. B. Gravenor and D. Kwiatkowski, An analysis of the temperature effects of fever on the intra-host population dynamics of Plasmodium falciparum,, Parasitology, 117 (1998), 97. doi: 10.1017/S0031182098002893. Google Scholar

[5]

M. B. Gravenor and A. L. Lloyd, Reply to: Models for the in-host dynamics of malaria revisited: Errors in some basic models lead to large over-estimates of growth rates,, Parasitology, 117 (1998), 409. doi: 10.1017/S0031182098003229. Google Scholar

[6]

M. B. Gravenor, A. R. McLean and D. Kwiatkowski, The regulation of malaria parasitaemia: Parameter estimates for a population model,, Parasitology, 110 (1995), 115. doi: 10.1017/S0031182000063861. Google Scholar

[7]

M. B. Gravenor, M. B. van Hensbroek and D. Kwiatkowski, Estimating sequestered parasite population dynamics in cerebral malaria,, Proc. Natl. Acad. Sci. USA., 95 (1998), 7620. doi: 10.1073/pnas.95.13.7620. Google Scholar

[8]

M. B. Gravenor, A. L. Lloyd, P. G. Kremsner, M. A. Missinou, M. English, K. Marsh and D. Kwiatkowski, A model for estimating total parasite load in falciparum malaria patients,, J. Theor. Biol., 217 (2002), 137. doi: 10.1006/jtbi.2002.3030. Google Scholar

[9]

C. Hetzel and R. M. Anderson, The within-host cellular dynamics of bloodstage malaria: Theoretical and experimental studies,, Parasitology, 113 (1996), 25. doi: 10.1017/S0031182000066245. Google Scholar

[10]

M. Hou and P. C. Müller, Design of observers for linear systems with unknown inputs,, IEEE Trans. Automat. Control, 37 (1992), 871. doi: 10.1109/9.256351. Google Scholar

[11]

M. Hou and P. C. Müller, Disturbance decoupled observer design: A unified viewpoint,, IEEE Trans. Automat. Control, 39 (1994), 1338. doi: 10.1109/9.293209. Google Scholar

[12]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260. doi: 10.1137/050643271. Google Scholar

[13]

D. Kwiatkowski and M. Nowak, Periodic and chaotic host-parasite interactions in human malaria,, Proc. Natl. Acad. Sci. USA., 88 (1991), 5111. doi: 10.1073/pnas.88.12.5111. Google Scholar

[14]

D. P. Mason and F. E. McKenzie, Blood-stage dynamics and clinical implications of mixed plasmodium vivax-plasmodium falciparum infections,, Am. J. Trop. Med. Hyg., 61 (1999), 367. Google Scholar

[15]

D. P. Mason, F. E. McKenzie and W. H. Bossert, The blood-stage dynamics of mixed plasmodium malariae-plasmodium falciparum infections,, J. Theor. Biol., 198 (1999), 549. doi: 10.1006/jtbi.1999.0932. Google Scholar

[16]

P. G. McQueen and F. E. McKenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections,, Proc. Natl. Acad. Sci. USA., 101 (2004), 9161. doi: 10.1073/pnas.0308256101. Google Scholar

[17]

L. Molineaux and K. Dietz, Review of intra-host models of malaria,, Parassitologia, 41 (2000), 221. Google Scholar

[18]

L. Molineaux, M. Trauble, W. E. Collins, G. M. Jeffery and K. Dietz, Malaria therapy reinoculation data suggest individual variation of an innate immune response and independent acquisition of antiparasitic and antitoxic immunities,, T. Roy. Soc. Trop. Med. H., 96 (2002), 205. doi: 10.1016/S0035-9203(02)90308-1. Google Scholar

[19]

L. B. Ochola, K. Marsh, Q. Gal, G. Pluschke and T. Smith, Estimating sequestered parasite load in severe malaria patients using both host and parasite markers,, Parasitology, 131 (2005), 449. doi: 10.1017/S0031182005008085. Google Scholar

[20]

I. M. Rouzine and F. E. McKenzie, Link between immune response and parasite synchronization in malaria,, Proc. Natl. Acad. Sci. USA., 100 (2003), 3473. doi: 10.1073/pnas.262796299. Google Scholar

[21]

A. Saul, Transmission dynamics of plasmodium falciparum,, Parasitol. Today., 12 (1996), 74. doi: 10.1016/0169-4758(96)80659-4. Google Scholar

show all references

References:
[1]

R. M. Anderson, R. M. May and S. Gupta, Non-linear phenomena in host-parasite interactions,, Parasitology, 99 (1989). doi: 10.1017/S0031182000083426. Google Scholar

[2]

W. E. Collins and G. M. Jeffery, A retrospective examination of sporozoite- and trophozoite-induced infections with plasmodium falciparum in patients previously infected with heterologous species of plasmodium: Effect on development of parasitologic and clinical immunity,, Am. J. Trop. Med. Hyg., 61 (1999), 36. doi: 10.4269/tropmed.1999.61-036. Google Scholar

[3]

M. Eichner, H. H. Diebner, L. Molineaux, W. E. Collins, G. M. Jeffery and K. Dietz, Genesis, sequestration and survival of plasmodium falciparum gametocytes: Parameter estimates from fitting a model to malariatherapy data,, T. Roy. Soc. Trop. Med. H., 95 (2001), 497. doi: 10.1016/S0035-9203(01)90016-1. Google Scholar

[4]

M. B. Gravenor and D. Kwiatkowski, An analysis of the temperature effects of fever on the intra-host population dynamics of Plasmodium falciparum,, Parasitology, 117 (1998), 97. doi: 10.1017/S0031182098002893. Google Scholar

[5]

M. B. Gravenor and A. L. Lloyd, Reply to: Models for the in-host dynamics of malaria revisited: Errors in some basic models lead to large over-estimates of growth rates,, Parasitology, 117 (1998), 409. doi: 10.1017/S0031182098003229. Google Scholar

[6]

M. B. Gravenor, A. R. McLean and D. Kwiatkowski, The regulation of malaria parasitaemia: Parameter estimates for a population model,, Parasitology, 110 (1995), 115. doi: 10.1017/S0031182000063861. Google Scholar

[7]

M. B. Gravenor, M. B. van Hensbroek and D. Kwiatkowski, Estimating sequestered parasite population dynamics in cerebral malaria,, Proc. Natl. Acad. Sci. USA., 95 (1998), 7620. doi: 10.1073/pnas.95.13.7620. Google Scholar

[8]

M. B. Gravenor, A. L. Lloyd, P. G. Kremsner, M. A. Missinou, M. English, K. Marsh and D. Kwiatkowski, A model for estimating total parasite load in falciparum malaria patients,, J. Theor. Biol., 217 (2002), 137. doi: 10.1006/jtbi.2002.3030. Google Scholar

[9]

C. Hetzel and R. M. Anderson, The within-host cellular dynamics of bloodstage malaria: Theoretical and experimental studies,, Parasitology, 113 (1996), 25. doi: 10.1017/S0031182000066245. Google Scholar

[10]

M. Hou and P. C. Müller, Design of observers for linear systems with unknown inputs,, IEEE Trans. Automat. Control, 37 (1992), 871. doi: 10.1109/9.256351. Google Scholar

[11]

M. Hou and P. C. Müller, Disturbance decoupled observer design: A unified viewpoint,, IEEE Trans. Automat. Control, 39 (1994), 1338. doi: 10.1109/9.293209. Google Scholar

[12]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260. doi: 10.1137/050643271. Google Scholar

[13]

D. Kwiatkowski and M. Nowak, Periodic and chaotic host-parasite interactions in human malaria,, Proc. Natl. Acad. Sci. USA., 88 (1991), 5111. doi: 10.1073/pnas.88.12.5111. Google Scholar

[14]

D. P. Mason and F. E. McKenzie, Blood-stage dynamics and clinical implications of mixed plasmodium vivax-plasmodium falciparum infections,, Am. J. Trop. Med. Hyg., 61 (1999), 367. Google Scholar

[15]

D. P. Mason, F. E. McKenzie and W. H. Bossert, The blood-stage dynamics of mixed plasmodium malariae-plasmodium falciparum infections,, J. Theor. Biol., 198 (1999), 549. doi: 10.1006/jtbi.1999.0932. Google Scholar

[16]

P. G. McQueen and F. E. McKenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections,, Proc. Natl. Acad. Sci. USA., 101 (2004), 9161. doi: 10.1073/pnas.0308256101. Google Scholar

[17]

L. Molineaux and K. Dietz, Review of intra-host models of malaria,, Parassitologia, 41 (2000), 221. Google Scholar

[18]

L. Molineaux, M. Trauble, W. E. Collins, G. M. Jeffery and K. Dietz, Malaria therapy reinoculation data suggest individual variation of an innate immune response and independent acquisition of antiparasitic and antitoxic immunities,, T. Roy. Soc. Trop. Med. H., 96 (2002), 205. doi: 10.1016/S0035-9203(02)90308-1. Google Scholar

[19]

L. B. Ochola, K. Marsh, Q. Gal, G. Pluschke and T. Smith, Estimating sequestered parasite load in severe malaria patients using both host and parasite markers,, Parasitology, 131 (2005), 449. doi: 10.1017/S0031182005008085. Google Scholar

[20]

I. M. Rouzine and F. E. McKenzie, Link between immune response and parasite synchronization in malaria,, Proc. Natl. Acad. Sci. USA., 100 (2003), 3473. doi: 10.1073/pnas.262796299. Google Scholar

[21]

A. Saul, Transmission dynamics of plasmodium falciparum,, Parasitol. Today., 12 (1996), 74. doi: 10.1016/0169-4758(96)80659-4. Google Scholar

[1]

Andrea Franceschetti, Andrea Pugliese, Dimitri Breda. Multiple endemic states in age-structured $SIR$ epidemic models. Mathematical Biosciences & Engineering, 2012, 9 (3) : 577-599. doi: 10.3934/mbe.2012.9.577

[2]

Yicang Zhou, Paolo Fergola. Dynamics of a discrete age-structured SIS models. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 841-850. doi: 10.3934/dcdsb.2004.4.841

[3]

Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409

[4]

Zhihua Liu, Pierre Magal, Shigui Ruan. Oscillations in age-structured models of consumer-resource mutualisms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 537-555. doi: 10.3934/dcdsb.2016.21.537

[5]

P. Magal, H. R. Thieme. Eventual compactness for semiflows generated by nonlinear age-structured models. Communications on Pure & Applied Analysis, 2004, 3 (4) : 695-727. doi: 10.3934/cpaa.2004.3.695

[6]

Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999

[7]

Zhilan Feng, Qing Han, Zhipeng Qiu, Andrew N. Hill, John W. Glasser. Computation of $\mathcal R $ in age-structured epidemiological models with maternal and temporary immunity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 399-415. doi: 10.3934/dcdsb.2016.21.399

[8]

Yingli Pan, Ying Su, Junjie Wei. Bistable waves of a recursive system arising from seasonal age-structured population models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 511-528. doi: 10.3934/dcdsb.2018184

[9]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[10]

Hisashi Inaba. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 69-96. doi: 10.3934/dcdsb.2006.6.69

[11]

Sophia R.-J. Jang. Discrete host-parasitoid models with Allee effects and age structure in the host. Mathematical Biosciences & Engineering, 2010, 7 (1) : 67-81. doi: 10.3934/mbe.2010.7.67

[12]

Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049

[13]

W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 35-57. doi: 10.3934/dcds.1995.1.35

[14]

Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (4) : 901-931. doi: 10.3934/mbe.2017048

[15]

Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva. An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences & Engineering, 2010, 7 (1) : 123-147. doi: 10.3934/mbe.2010.7.123

[16]

Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929-945. doi: 10.3934/mbe.2014.11.929

[17]

Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

[18]

Liming Cai, Maia Martcheva, Xue-Zhi Li. Epidemic models with age of infection, indirect transmission and incomplete treatment. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2239-2265. doi: 10.3934/dcdsb.2013.18.2239

[19]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[20]

Ryszard Rudnicki, Radosław Wieczorek. On a nonlinear age-structured model of semelparous species. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2641-2656. doi: 10.3934/dcdsb.2014.19.2641

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]