2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449

A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis

1. 

Department of Mathematics and Statistics, California State University, Holt Hall 181, Chico, CA 95929

2. 

Departments of Critical Care Medicine and Medicine, University of Pittsburgh and Pittsburgh Veterans Affairs Healthcare System, 644A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, United States

3. 

Departments of Critical Care Medicine and Medicine, University of Pittsburgh Pittsburgh Veterans Affairs Healthcare System, 644A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, United States

Received  November 2013 Revised  September 2014 Published  September 2014

A study of the process of pharmacokinetics-pharmacodynamics (PKPD) of antibiotics and their interaction with bacteria during peritoneal dialysis associated peritonitis (PDAP) is presented. We propose a mathematical model describing the evolution of bacteria population in the presence of antibiotics for different peritoneal dialysis regimens. Using the model along with experimental data, clinical parameters, and physiological values, we compute variations in PD fluid distributions, drug concentrations, and number of bacteria in peritoneal and extra-peritoneal cavities. Scheduling algorithms for the PD exchanges that minimize bacteria count are investigated.
Citation: Colette Calmelet, John Hotchkiss, Philip Crooke. A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1449-1464. doi: 10.3934/mbe.2014.11.1449
References:
[1]

M. Bouvier D’Yvoire and P. Maire, Dosage regimens of antibacterials: Implications of a pharmacokinetic/pharmacodynamic model,, Clin. Drug. Invest., 11 (1996), 229. Google Scholar

[2]

E. M. C. D’Agata, Antimicrobial-resistant, gram positive bacteria among patients undergoing chronic hemodialysis,, Clin. Infect. Dis., 15 (2002), 1212. doi: 10.1086/344282. Google Scholar

[3]

J. T. Daugirdas, P. G. Blake and T. S. Ing, Physiology of Peritoneal Dialysis. Handbook of Dialysis,, Lippincott Williams & Wilkins, (2011). Google Scholar

[4]

E. D. Hermsen, L. B. Hovde, J. R. Hotchkiss and J. C. Rotschafer, Increased killing of staphylococci and streptococci by daptomycin compared with cefazolin and vancomycin in an in vito peritoneal dialysate model,, Antimicrobial Agents Chemotherapy, 47 (2003), 3764. Google Scholar

[5]

S. Hota, P. S. Crooke and J. R. Hotchkiss, A Monte Carlo analysis of peritoneal antimicrobial pharmacokinetics,, Adv. Exp. Med. Biol., 696 (2011), 401. doi: 10.1007/978-1-4419-7046-6_40. Google Scholar

[6]

J. R. Hotchkiss, E. D. Hermsen and L. B. Hovde, et al., Dynamic analysis of peritoneal dialysis associated peritonitis,, ASAIO Journal, (2004), 568. doi: 10.1097/01.MAT.0000145238.98158.F0. Google Scholar

[7]

Q. Khairullah, R. Provenzano, J. Tayeb and A. Ahmad, et al., Comparison of vancomycin versus cefazolin as inititial therapy for peritonitis in peritoneal dialysis patients,, Peritoneal Dialysis International, 22 (2002), 339. Google Scholar

[8]

J. K. Leypoldt and C. D. Mistry, Ultrafiltration in peritoneal dialysis,, in The Textbook of Peritoneal Dialysis, (1994), 135. Google Scholar

[9]

S. Millikin, G. Matzke and W. Keane, Antimicrobial treatment of peritonitis associated with continuous ambulatory peritoneal dialysis,, Peritoneal Dialysis International, 11 (1991), 252. Google Scholar

[10]

E. Nielsen and L. Friberg, Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs,, Pharmacol. Rev., 65 (2013), 1053. doi: 10.1124/pr.111.005769. Google Scholar

[11]

R. R. Regoes, et al., Pharmacodynamic functions: A multiparameter approach to the design of antibiotic treatment regimens,, Antimicrob. Agents & Chemo., 48 (2004), 3670. Google Scholar

[12]

T. Tozer and M. Rowland, Introduction to Pharmacokinetics and Pharmacodynamics: The Quantitative Basis of Drug Therapy,, Lippincott Williams & Wilkins, (2006). Google Scholar

[13]

J. Zhi, C. H. Nightingale and R. Quintiliani, A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions,, J. Pharm. Sci., 75 (1986), 1063. doi: 10.1002/jps.2600751108. Google Scholar

show all references

References:
[1]

M. Bouvier D’Yvoire and P. Maire, Dosage regimens of antibacterials: Implications of a pharmacokinetic/pharmacodynamic model,, Clin. Drug. Invest., 11 (1996), 229. Google Scholar

[2]

E. M. C. D’Agata, Antimicrobial-resistant, gram positive bacteria among patients undergoing chronic hemodialysis,, Clin. Infect. Dis., 15 (2002), 1212. doi: 10.1086/344282. Google Scholar

[3]

J. T. Daugirdas, P. G. Blake and T. S. Ing, Physiology of Peritoneal Dialysis. Handbook of Dialysis,, Lippincott Williams & Wilkins, (2011). Google Scholar

[4]

E. D. Hermsen, L. B. Hovde, J. R. Hotchkiss and J. C. Rotschafer, Increased killing of staphylococci and streptococci by daptomycin compared with cefazolin and vancomycin in an in vito peritoneal dialysate model,, Antimicrobial Agents Chemotherapy, 47 (2003), 3764. Google Scholar

[5]

S. Hota, P. S. Crooke and J. R. Hotchkiss, A Monte Carlo analysis of peritoneal antimicrobial pharmacokinetics,, Adv. Exp. Med. Biol., 696 (2011), 401. doi: 10.1007/978-1-4419-7046-6_40. Google Scholar

[6]

J. R. Hotchkiss, E. D. Hermsen and L. B. Hovde, et al., Dynamic analysis of peritoneal dialysis associated peritonitis,, ASAIO Journal, (2004), 568. doi: 10.1097/01.MAT.0000145238.98158.F0. Google Scholar

[7]

Q. Khairullah, R. Provenzano, J. Tayeb and A. Ahmad, et al., Comparison of vancomycin versus cefazolin as inititial therapy for peritonitis in peritoneal dialysis patients,, Peritoneal Dialysis International, 22 (2002), 339. Google Scholar

[8]

J. K. Leypoldt and C. D. Mistry, Ultrafiltration in peritoneal dialysis,, in The Textbook of Peritoneal Dialysis, (1994), 135. Google Scholar

[9]

S. Millikin, G. Matzke and W. Keane, Antimicrobial treatment of peritonitis associated with continuous ambulatory peritoneal dialysis,, Peritoneal Dialysis International, 11 (1991), 252. Google Scholar

[10]

E. Nielsen and L. Friberg, Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs,, Pharmacol. Rev., 65 (2013), 1053. doi: 10.1124/pr.111.005769. Google Scholar

[11]

R. R. Regoes, et al., Pharmacodynamic functions: A multiparameter approach to the design of antibiotic treatment regimens,, Antimicrob. Agents & Chemo., 48 (2004), 3670. Google Scholar

[12]

T. Tozer and M. Rowland, Introduction to Pharmacokinetics and Pharmacodynamics: The Quantitative Basis of Drug Therapy,, Lippincott Williams & Wilkins, (2006). Google Scholar

[13]

J. Zhi, C. H. Nightingale and R. Quintiliani, A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions,, J. Pharm. Sci., 75 (1986), 1063. doi: 10.1002/jps.2600751108. Google Scholar

[1]

Laura Cattaneo, Paolo Zunino. Computational models for fluid exchange between microcirculation and tissue interstitium. Networks & Heterogeneous Media, 2014, 9 (1) : 135-159. doi: 10.3934/nhm.2014.9.135

[2]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[3]

Sebastian Bonhoeffer, Pia Abel zur Wiesch, Roger D. Kouyos. Rotating antibiotics does not minimize selection for resistance. Mathematical Biosciences & Engineering, 2010, 7 (4) : 919-922. doi: 10.3934/mbe.2010.7.919

[4]

Rebeccah E. Marsh, Jack A. Tuszyński, Michael Sawyer, Kenneth J. E. Vos. A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel. Mathematical Biosciences & Engineering, 2011, 8 (2) : 325-354. doi: 10.3934/mbe.2011.8.325

[5]

Roman Czapla, Vladimir V. Mityushev. A criterion of collective behavior of bacteria. Mathematical Biosciences & Engineering, 2017, 14 (1) : 277-287. doi: 10.3934/mbe.2017018

[6]

Robert E. Beardmore, Rafael Peña-Miller. Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences & Engineering, 2010, 7 (3) : 527-552. doi: 10.3934/mbe.2010.7.527

[7]

Shigeki Akiyama, Edmund Harriss. Pentagonal domain exchange. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4375-4400. doi: 10.3934/dcds.2013.33.4375

[8]

Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561

[9]

Valeria Artale, Cristina L. R. Milazzo, Calogero Orlando, Angela Ricciardello. Comparison of GA and PSO approaches for the direct and LQR tuning of a multirotor PD controller. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2067-2091. doi: 10.3934/jimo.2017032

[10]

Giuseppe Toscani. A kinetic description of mutation processes in bacteria. Kinetic & Related Models, 2013, 6 (4) : 1043-1055. doi: 10.3934/krm.2013.6.1043

[11]

Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of viral infection of immobilized bacteria. Networks & Heterogeneous Media, 2013, 8 (1) : 327-342. doi: 10.3934/nhm.2013.8.327

[12]

Giacomo Micheli. Cryptanalysis of a noncommutative key exchange protocol. Advances in Mathematics of Communications, 2015, 9 (2) : 247-253. doi: 10.3934/amc.2015.9.247

[13]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[14]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[15]

Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2383-2405. doi: 10.3934/dcdsb.2019100

[16]

Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2315-2334. doi: 10.3934/dcdsb.2019097

[17]

Robert Stephen Cantrell, Brian Coomes, Yifan Sha. A tridiagonal patch model of bacteria inhabiting a Nanofabricated landscape. Mathematical Biosciences & Engineering, 2017, 14 (4) : 953-973. doi: 10.3934/mbe.2017050

[18]

Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of phage infection of bacteria in a petri dish. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 471-496. doi: 10.3934/dcdsb.2016.21.471

[19]

Daniel Wetzel. Pattern analysis in a benthic bacteria-nutrient system. Mathematical Biosciences & Engineering, 2016, 13 (2) : 303-332. doi: 10.3934/mbe.2015004

[20]

Edoardo Beretta, Fortunata Solimano, Yanbin Tang. Analysis of a chemostat model for bacteria and virulent bacteriophage. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 495-520. doi: 10.3934/dcdsb.2002.2.495

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]