• Previous Article
    Distributed delays in a hybrid model of tumor-Immune system interplay
  • MBE Home
  • This Issue
  • Next Article
    An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix
2013, 10(1): 59-73. doi: 10.3934/mbe.2013.10.59

Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells

1. 

Department of Mathematics and Informatics, University of Messina, Viale F. Stagno d'Alcontres n.31, 98166 Messina, Italy, Italy

2. 

Department I.C.I.E.A.M.A., University of Messina, Contrada Di Dio (S.Agata), 98166 Messina, Italy

Received  April 2012 Revised  September 2012 Published  December 2012

In a previous paper a mathematical model was developed for the dynamics of activation and clonal expansion of T cells during the immune response to a single type of antigen challenge, constructed phenomenologically in the macroscopic framework of a thermodynamic theory of continuum mechanics for reacting and proliferating fluid mixtures. The present contribution deals with approximate smooth solutions, called asymptotic waves, of the system of PDEs describing the introduced model, obtained using a suitable perturbative method. In particular, in the one-dimensional case, after deriving the expression of the velocity along the characteristic rays and the equation of the wave front, the transport equation for the first perturbation term of the asymptotic solution is obtained. Finally, it is shown that this transport equation can be reduced to an equation similar to Burgers equation.
Citation: D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 59-73. doi: 10.3934/mbe.2013.10.59
References:
[1]

M. Dolfin and D. Criaco, A phenomenological approach to the dynamics of activation and clonal expansion of T cells,, Mathematical and Computer Modelling, 53 (2011), 314. Google Scholar

[2]

G. Boillat, "La Propagation des Ondes,", $1^{st}$ edition, (1965). Google Scholar

[3]

G. Boillat, Ondes asymptotiques nonlineaires,, Annali di Matematica Pura ed Applicata, IV, CXI (1976), 31. Google Scholar

[4]

D. Fusco, Onde non lineari dispersive e dissipative,, Bollettino U.M.I, 16-A (1976), 450. Google Scholar

[5]

A. Jeffrey and T. Taniuti, "Nonlinear Wave Propagation,", $1^{st}$ edition, (1964). Google Scholar

[6]

A. Jeffrey, The propagation of weak discontinuities in quasilinear symmetric hyperbolic system,, Z. A. M. P. 14 (1963), 14 (1963), 31. Google Scholar

[7]

A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation,, SIAM Review, 14 (1972), 582. Google Scholar

[8]

A. Jeffrey, The development of jump discontinuities in nonlinear hyperbolic systems of equations in two independent variables,, Arch. Rational Mech. Anal., 14 (1963), 27. Google Scholar

[9]

P. D. Lax, Nonlinear hyperbolic equations,, Comm. Pure Appl. Math., 6 (1983), 231. Google Scholar

[10]

A. Georgescu, "Asymptotic Treatment of Differential Equations,", $1^{st}$ edition, (1995). Google Scholar

[11]

A. Donato and A. M. Greco, "Metodi Qualitativi per Onde Non Lineari - Quaderni del C. N. R., Gruppo Nazionale di Fisica Matematica, 11th Scuola Estiva di Fisica Matematica, Ravello, (1986), 8-20 September,", $1^{st}$ edition, (1987). Google Scholar

[12]

Y. Choquet-Bruhat, Ondes asymptotiques et approchees pour systemes d'equations aux derivees partielles nonlineaires,, J. Math. Pures et Appl., 48 (1968), 117. Google Scholar

[13]

P. D. Lax, "Contributions to the Theory of Partial Differential Equations,", $1^{st}$ edition, (1954). Google Scholar

[14]

P. D. Lax, Hyperbolic systems of conservation law (II),, Comm. Pure Appl. Math., 10 (1957), 537. doi: 10.1002/cpa.3160100406. Google Scholar

[15]

T. Taniuti and C. C. Wei, Reductive pertubation method in nonlinear wave propagation,, J. Phys. Soc. Japan, 24 (1968), 941. Google Scholar

[16]

V. Ciancio and L. Restuccia, Nonlinear dissipative waves in viscoanelastic media,, Physica A, 132 (1985), 606. Google Scholar

[17]

V. Ciancio and L. Restuccia, Asymptotic waves in anelastic media without memory (Maxwell media),, Physica A, 131 (1985), 251. doi: 10.1016/0378-4371(85)90090-1. Google Scholar

[18]

V. Ciancio and L. Restuccia, The generalized Burgers equation in viscoanelastic media with memory,, Physica A, 142 (1987), 309. Google Scholar

[19]

A. Jeffrey, "Quasilinear Hyperbolic Systems and Waves,", $1^{st}$ edition, (1976). Google Scholar

[20]

I. Muller, "Thermodynamics,", $1^{st}$ edition, (1985). Google Scholar

[21]

I. Muller and T. Ruggeri, "Rational Extended Thermodynamics,", $1^{st}$ edition, (1998). Google Scholar

[22]

R. M. Ford and D. A. Lauffenburger, Analysis of chemotactic bacterial distributions in population migraton assays using a mathematical model applicable to steep ar shallow attractant gradients,, Bullettin of Mathematical Biology, 53 (1991), 721. Google Scholar

[23]

D. A. Lauffenburger and K. H. Keller, A Effects of leukocyte random motility and chemotaxis in tissue inflammatory response,, Theoretical Biology, 81 (): 475. Google Scholar

[24]

A. Tosin, D. Ambrosi and L. Preziosi, Mechanics and chemotaxis in the morphogenesis of vascular networks,, Mathematical Biology, 68 (2006), 1819. doi: 10.1007/s11538-006-9071-2. Google Scholar

[25]

H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures,, Mathematical Medicine and Biology, 20 (2003), 341. doi: 10.1093/imammb/20.4.341. Google Scholar

[26]

G. Carini, "Lezioni di Istituzioni di Fisica Matematica,", edition, (1989). Google Scholar

[27]

J. D. Murray, "Mathematical Biology, vol I,", $2^{nd}$ edition, (2002). Google Scholar

[28]

J. D. Murray, "Mathematical Biology, vol II,", $2^{nd}$ edition, (2002). Google Scholar

[29]

E. Hopf, The partial differential equation ut + uux = xx,, Comm. Appl. Math., 3 (1950), 201. Google Scholar

show all references

References:
[1]

M. Dolfin and D. Criaco, A phenomenological approach to the dynamics of activation and clonal expansion of T cells,, Mathematical and Computer Modelling, 53 (2011), 314. Google Scholar

[2]

G. Boillat, "La Propagation des Ondes,", $1^{st}$ edition, (1965). Google Scholar

[3]

G. Boillat, Ondes asymptotiques nonlineaires,, Annali di Matematica Pura ed Applicata, IV, CXI (1976), 31. Google Scholar

[4]

D. Fusco, Onde non lineari dispersive e dissipative,, Bollettino U.M.I, 16-A (1976), 450. Google Scholar

[5]

A. Jeffrey and T. Taniuti, "Nonlinear Wave Propagation,", $1^{st}$ edition, (1964). Google Scholar

[6]

A. Jeffrey, The propagation of weak discontinuities in quasilinear symmetric hyperbolic system,, Z. A. M. P. 14 (1963), 14 (1963), 31. Google Scholar

[7]

A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation,, SIAM Review, 14 (1972), 582. Google Scholar

[8]

A. Jeffrey, The development of jump discontinuities in nonlinear hyperbolic systems of equations in two independent variables,, Arch. Rational Mech. Anal., 14 (1963), 27. Google Scholar

[9]

P. D. Lax, Nonlinear hyperbolic equations,, Comm. Pure Appl. Math., 6 (1983), 231. Google Scholar

[10]

A. Georgescu, "Asymptotic Treatment of Differential Equations,", $1^{st}$ edition, (1995). Google Scholar

[11]

A. Donato and A. M. Greco, "Metodi Qualitativi per Onde Non Lineari - Quaderni del C. N. R., Gruppo Nazionale di Fisica Matematica, 11th Scuola Estiva di Fisica Matematica, Ravello, (1986), 8-20 September,", $1^{st}$ edition, (1987). Google Scholar

[12]

Y. Choquet-Bruhat, Ondes asymptotiques et approchees pour systemes d'equations aux derivees partielles nonlineaires,, J. Math. Pures et Appl., 48 (1968), 117. Google Scholar

[13]

P. D. Lax, "Contributions to the Theory of Partial Differential Equations,", $1^{st}$ edition, (1954). Google Scholar

[14]

P. D. Lax, Hyperbolic systems of conservation law (II),, Comm. Pure Appl. Math., 10 (1957), 537. doi: 10.1002/cpa.3160100406. Google Scholar

[15]

T. Taniuti and C. C. Wei, Reductive pertubation method in nonlinear wave propagation,, J. Phys. Soc. Japan, 24 (1968), 941. Google Scholar

[16]

V. Ciancio and L. Restuccia, Nonlinear dissipative waves in viscoanelastic media,, Physica A, 132 (1985), 606. Google Scholar

[17]

V. Ciancio and L. Restuccia, Asymptotic waves in anelastic media without memory (Maxwell media),, Physica A, 131 (1985), 251. doi: 10.1016/0378-4371(85)90090-1. Google Scholar

[18]

V. Ciancio and L. Restuccia, The generalized Burgers equation in viscoanelastic media with memory,, Physica A, 142 (1987), 309. Google Scholar

[19]

A. Jeffrey, "Quasilinear Hyperbolic Systems and Waves,", $1^{st}$ edition, (1976). Google Scholar

[20]

I. Muller, "Thermodynamics,", $1^{st}$ edition, (1985). Google Scholar

[21]

I. Muller and T. Ruggeri, "Rational Extended Thermodynamics,", $1^{st}$ edition, (1998). Google Scholar

[22]

R. M. Ford and D. A. Lauffenburger, Analysis of chemotactic bacterial distributions in population migraton assays using a mathematical model applicable to steep ar shallow attractant gradients,, Bullettin of Mathematical Biology, 53 (1991), 721. Google Scholar

[23]

D. A. Lauffenburger and K. H. Keller, A Effects of leukocyte random motility and chemotaxis in tissue inflammatory response,, Theoretical Biology, 81 (): 475. Google Scholar

[24]

A. Tosin, D. Ambrosi and L. Preziosi, Mechanics and chemotaxis in the morphogenesis of vascular networks,, Mathematical Biology, 68 (2006), 1819. doi: 10.1007/s11538-006-9071-2. Google Scholar

[25]

H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures,, Mathematical Medicine and Biology, 20 (2003), 341. doi: 10.1093/imammb/20.4.341. Google Scholar

[26]

G. Carini, "Lezioni di Istituzioni di Fisica Matematica,", edition, (1989). Google Scholar

[27]

J. D. Murray, "Mathematical Biology, vol I,", $2^{nd}$ edition, (2002). Google Scholar

[28]

J. D. Murray, "Mathematical Biology, vol II,", $2^{nd}$ edition, (2002). Google Scholar

[29]

E. Hopf, The partial differential equation ut + uux = xx,, Comm. Appl. Math., 3 (1950), 201. Google Scholar

[1]

Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations & Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012

[2]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[3]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2271-2297. doi: 10.3934/dcds.2013.33.2271

[4]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[5]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[6]

Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i

[7]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[8]

Stephen Coombes, Helmut Schmidt. Neural fields with sigmoidal firing rates: Approximate solutions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1369-1379. doi: 10.3934/dcds.2010.28.1369

[9]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[10]

Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749

[11]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[12]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[13]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[14]

Piotr Bogusław Mucha, Milan Pokorný, Ewelina Zatorska. Approximate solutions to a model of two-component reactive flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1079-1099. doi: 10.3934/dcdss.2014.7.1079

[15]

T. Gallouët, J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2371-2391. doi: 10.3934/cpaa.2012.11.2371

[16]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

[17]

Armando Majorana. Approximate explicit stationary solutions to a Vlasov equation for planetary rings. Kinetic & Related Models, 2017, 10 (2) : 467-479. doi: 10.3934/krm.2017018

[18]

Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics & Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153

[19]

Y. Efendiev, Alexander Pankov. Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 481-492. doi: 10.3934/dcdsb.2006.6.481

[20]

Yu Han, Nan-Jing Huang. Some characterizations of the approximate solutions to generalized vector equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1135-1151. doi: 10.3934/jimo.2016.12.1135

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]