• Previous Article
    Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response
  • MBE Home
  • This Issue
  • Next Article
    On a mathematical model of tumor growth based on cancer stem cells
2013, 10(1): 235-261. doi: 10.3934/mbe.2013.10.235

A Cellular Potts model simulating cell migration on and in matrix environments

1. 

Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino

2. 

Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

3. 

Department of Cell Biology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, Netherlands

Received  May 2012 Revised  July 2012 Published  December 2012

Cell migration on and through extracellular matrix is fundamental in a wide variety of physiological and pathological phenomena, and is exploited in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix fiber orientation, pore size, and elasticity, or cell deformation, proteolysis, and adhesion. We here present an extended Cellular Potts Model (CPM) able to qualitatively and quantitatively describe cell migration efficiencies and phenotypes both on two-dimensional substrates and within three-dimensional matrices, close to experimental evidence. As distinct features of our approach, cells are modeled as compartmentalized discrete objects, differentiated into nucleus and cytosolic region, while the extracellular matrix is composed of a fibrous mesh and a homogeneous fluid. Our model provides a strong correlation of the directionality of migration with the topological extracellular matrix distribution and a biphasic dependence of migration on the matrix structure, density, adhesion, and stiffness, and, moreover, simulates that cell locomotion in highly constrained fibrillar obstacles requires the deformation of the cell's nucleus and/or the activity of cell-derived proteolysis. In conclusion, we here propose a mathematical modeling approach that serves to characterize cell migration as a biological phenomenon in healthy and diseased tissues and in engineering applications.
Citation: Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235
References:
[1]

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, "Molecular Biology of the Cell,", $3^{rd}$ edition, (1994). Google Scholar

[2]

M. Arnold, V. C. Hirschfeld-Warneken, T. Lohmüller, P. Heil, J. Blümmel, E. A. Cavalcanti-Adam, M. López-García, P. Walther, H. Kessler, B. Geiger and J. P. Spatz, Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing,, Nano Lett., 8 (2008), 2063. Google Scholar

[3]

M. Bajénoff, J. G. Egen, L. Y. Koo, J. P. Laugier, F. Brau, N. Glaichenhaus and R. N. Germain, Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes,, Immunity, 25 (2006), 989. doi: 10.1016/j.immuni.2006.10.011. Google Scholar

[4]

A. Balter, R. M. Merks, N. J. Poplawski, M. Swat and J. A. Glazier, The Glazier-Graner-Hogeweg model: Extensions, future directions, and opportunities for further study,, in, (2007), 157. Google Scholar

[5]

A. L. Bauer, T. L. Jackson and Y. Jiang, A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis,, Biophys. J., 92 (2007), 3105. doi: 10.1529/biophysj.106.101501. Google Scholar

[6]

C. Beadle, M. C. Assanah, P. Monzo, R. Vallee, S. Rosenfeld and P. Canoll, The role of myosin ii in glioma invasion of the brain,, Mol. Biol. Cell., 19 (2008), 3357. doi: 10.1091/mbc.E08-03-0319. Google Scholar

[7]

J. Behring, R. Junker, X. F. Walboomers, B. Chessnut and J. A. Jansen, Toward guided tissue and bone regeneration: Morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review,, Odontology, 96 (2008), 1. Google Scholar

[8]

A. O. Brightman, B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson and S. L. Voytik-Harbin, Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro,, Biopolymers, 54 (2000), 222. doi: 10.1002/1097-0282(200009)54:3<222::AID-BIP80>3.0.CO;2-K. Google Scholar

[9]

A. Brock, E. Chang, C. C. Ho, P. LeDuc, X. Jiang, G. M. Whitesides and D. E. Ingber, Geometric determinants of directional cell motility revealed using microcontact printing,, Langmuir, 19 (2003), 1611. Google Scholar

[10]

B. T. Burgess, J. L. Myles and R. B. Dickinson, Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of RGD-grafted collagen,, Ann. Biomed. Eng., 28 (2003), 110. Google Scholar

[11]

R. M. Capito and M. Spector, Scaffold-based articular cartilage repair,, IEEE Eng. Med. Biol. Mag., 22 (2003), 42. Google Scholar

[12]

E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger and J. P. Spatz, Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands,, Biophys. J., 92 (2007), 2964. Google Scholar

[13]

J. Condeelis and J. E. Segall, Intravital imaging of cell movement in tumours,, Nat. Rev. Cancer, 3 (2003), 921. Google Scholar

[14]

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl and P. J. Keely, Aligned collagen is a prognostic signature for survival in human breast carcinoma,, Am. J. Pathol., 178 (2011), 1221. doi: 10.1016/j.ajpath.2010.11.076. Google Scholar

[15]

R. B. Dickinson, S. Guido and R. T. Tranquillo, Biased cellmigration of fibroblasts exhibiting contact guidance in oriented collagen gels,, Ann. Biomed. Eng., 22 (1994), 342. doi: 10.1007/BF02368241. Google Scholar

[16]

P. A. DiMilla, J. A. Stone, J. A. Quinn, S. M. Albelda and D. A. Lauffenburger, Maximal migration of human smooth-muscle cells on fibronectin and type-IV collagen occurs at an intermediate attachment strength,, J. Cell. Biol., 122 (1993), 729. doi: 10.1083/jcb.122.3.729. Google Scholar

[17]

A. D. Doyle, F. W. Wang, K. Matsumoto and K. M. Yamada, One-dimensional topography underlies three-dimensional fibrillar cell migration,, J. Cell. Biol., 184 (2009), 481. Google Scholar

[18]

N. Dubey, P. C. Letourneau and R. T. Tranquillo, Neuronal contact guidance in magnetically aligned fibrin gels: effect of variation in gel mechano-structural properties,, Biomaterials, 22 (2001), 1065. Google Scholar

[19]

G. A. Dunn and T. Ebendal, Contact guidance on oriented collagen gels,, Exp. Cell. Res., 111 (1978), 475. Google Scholar

[20]

G. A. Dunn, Characterizing a kinesis response: Time-averaged measures of cell speed and directional persistence,, Agents Actions Suppl., 12 (1983), 14. Google Scholar

[21]

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin and D. Discher, Substrate compliance versus ligand density in cell on gel responses,, Biophys. J., 86 (2004), 617. Google Scholar

[22]

P. Friedl, F. Entschladen, C. Conrad, B. Niggemann and K. S. Zänker, CD4+ T-lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize $\beta$1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion,, Eur. J. Immunol., 28 (1998), 2331. Google Scholar

[23]

P. Friedl and E. B. Brocker, The biology of cell locomotion within three-dimensional extracellular matrix,, Cell. Mol. Life Sci., 57 (2000), 41. doi: 10.1007/s000180050498. Google Scholar

[24]

P. Friedl and K. Wolf, Tumour-cell invasion and migration: Diversity and escape mechanisms,, Nat. Rev. Cancer, 3 (2003), 362. Google Scholar

[25]

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne and K. S. Zänker, Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44,, Cancer Res., 57 (1997), 2061. Google Scholar

[26]

P. Friedl, K. Wolf and J. Lammerding, Nuclear mechanics during cell migration,, Curr. Opin. Cell. Biol., 23 (2011). Google Scholar

[27]

P. Friedl and B. Weigelin, Interstitial leukocyte migration and immune function,, Nat. Immunol., 9 (2008), 960. Google Scholar

[28]

P. Friedl and K. Wolf, Plasticity of cell migration: A multiscale tuning model,, J. Cell. Biol., 188 (2009), 11. Google Scholar

[29]

P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer,, Nat. Rev. Mol. Cell. Biol., 10 (2009), 445. Google Scholar

[30]

C. Gaudet, W. Marganski, S. Kim, C. T. Brown, V. Gunderia, M. Dembo and J. Wong, Influence of type I collagen surface density on fibroblast spreading, motility, and contractility,, Biophys. J., 85 (2003), 3329. Google Scholar

[31]

G. Gerlitz and M. Bustin, The role of chromatin structure in cell migration,, Trends Cell. Biol., 21 (2011), 6. Google Scholar

[32]

C. Giverso, M. Scianna, L. Preziosi, N. Lo Buono and A. Funaro, Individual cell-based model for in-vitro mesothelial invasion of ovarian cancer,, Math. Model. Nat. Phenom., 5 (2010), 203. Google Scholar

[33]

J. A. Glazier, A. Balter and N. J. Poplawski, Magnetization to morphogenesis: A brief history of the Glazier-Graner-Hogeweg model,, in, (2007), 79. Google Scholar

[34]

J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells,, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47 (1993), 2128. Google Scholar

[35]

S. L. Goodman, G. Risse and K. Vondermark, The E8 subfragment of laminin promotes locomotion of myoblasts over extracellular- matrix,, J. Cell. Biol., 109 (1989), 799. Google Scholar

[36]

F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model,, Phys. Rev. Lett., 69 (1992), 2013. doi: 10.1103/PhysRevLett.69.2013. Google Scholar

[37]

B. A. Harley, H. Kim, M. H. Zaman, I. V. Yannas, D. A. Lauffenburger and L. J. Gibson, Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions,, Biophys. J., 95 (2008), 4013. doi: 10.1529/biophysj.107.122598. Google Scholar

[38]

B. A. Harley, M. H. Spilker, J. W. Wu, K. Asano, H. P. Hsu, M. Spector and I. V. Yannas, Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps,, Cells Tissues Organs, 176 (2008), 153. Google Scholar

[39]

O. Ilina and P. Friedl, Mechanisms of collective cell migration at a glance,, J. Cell Sci., 122 (2009), 3203. Google Scholar

[40]

E. Ising, Beitrag zur theorie des ferromagnetismus,, Z. Physik., 31 (1925). Google Scholar

[41]

R. M. Kuntz and W. M. Saltzman, Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration,, Biophys. J., 72 (1997), 1472. doi: 10.1016/S0006-3495(97)78793-9. Google Scholar

[42]

S. Kurosaka and A. Kashina, Cell biology of embryonic migration,, Birth Defects Res. C. Embryo Today, 84 (2008), 102. Google Scholar

[43]

E. Lamers, R. Van Horssen, J. Te Riet, F. C. Van Delft, R. Luttge, X. F. Walboomers and J. A. Jansen, The influence of nanoscale topographical cues on initial osteoblast morphology and migration,, Eur. Cell. Mater., 9 (2010), 329. Google Scholar

[44]

D. A. Lauffenburger and J. J. Lindermann, "Receptors: Bodels for Binding, Trafficking, and Signaling,", Oxford University Press, (1996). Google Scholar

[45]

D. A. Lauffenburger and A. F. Horwitz, Cell migration: a physically integrated molecular process,, Cell, 84 (1996), 359. doi: 10.1016/S0092-8674(00)81280-5. Google Scholar

[46]

D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof and M. Bastmeyer, Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion,, J. Cell. Sci., 117 (2004), 41. doi: 10.1242/jcs.00836. Google Scholar

[47]

M. P. Lutolf, J. L. Lauer-Fields, H. G. Schmoekel, A. T. Metters, F. E. Weber, G. B. Fields and J. A. Hubbell, Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics,, Proc. Natl. Acad. Sci. U. S. A., 100 (2003), 5413. Google Scholar

[48]

K. Maaser, K. Wolf, C. E. Klein, B. Niggemann, K. S. Zänker, E. B. Bröcker and Friedl, Functional hierarchy of simultaneously expressed adhesion receptors: Integrin $\alpha$2$\beta$1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices,, Mol. Biol. Cell., 10 (1999), 3067. Google Scholar

[49]

A. W. Mahoney, B. G. Smith, N. S. Flann and G. J. Podgorski, Discovering novel cancer therapies: A computational modeling and search approach,, in, (2008), 233. Google Scholar

[50]

A. F. M arée, V. A. Grieneisen and P. Hogeweg, The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis,, in, (2007), 107. Google Scholar

[51]

R. M. Merks, E. D. Perryn, A. Shirinifard and J. A. Glazier, Contact-inhibited chemotaxis in de novo and sprouting blood vessel growth,, PLoS Comput. Biol., 4 (2008). Google Scholar

[52]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines,, J. Chem. Phys., 21 (1953), 1087. Google Scholar

[53]

A. Mogilner and G. Oster, Polymer motors: Ppushing out the front and pulling up the back,, Current Biology, 13 (2003), 721. Google Scholar

[54]

F. J. O'Brien, B. A. Harley, I. V. Yannas and L. Gibson, Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds,, Biomaterials, 25 (2004), 1077. Google Scholar

[55]

L. H. Olde Damink, P. J. Dijkstra, M. J. Luyn, P. B. Wachem, P. Nieuwenhuis and J. Feijen, Glutaraldehyde as a crosslinking agent for collagen-based biomaterials,, J. Mater. Sci. Mater. Med., 6 (1995), 460. Google Scholar

[56]

J. M. Orban, L. B. Wilson, J. A. Kofroth, M. S. El-Kurdi, T. M. Maul and D. A. Vorp, Crosslinking of collagen gels by transglutaminase,, J. Biomed. Mater. Res. A, 68 (2004), 756. Google Scholar

[57]

S. P. Palecek, J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger and A. F. Horwitz, Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness,, Nature, 385 (1997), 537. Google Scholar

[58]

E. D. Perryn, A. Czirok and C. D. Little, Vascular sprout formation entails tissue deformations and VE-cadherin-dependent cell-autonomous motility,, Dev. Biol., 313 (2008), 545. doi: 10.1016/j.ydbio.2007.10.036. Google Scholar

[59]

S. R. Peyton and A. J. Putnam, Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion,, J. Cell. Physiol., 204 (2005), 198. doi: 10.1002/jcp.20274. Google Scholar

[60]

T. D. Pollard and G. G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments,, Cell, 112 (2003), 453. doi: 10.1016/S0092-8674(03)00120-X. Google Scholar

[61]

R. B. Potts, Some generalized order-disorder transformations,, Proc. Camb. Phil. Soc., 48 (1952), 106. Google Scholar

[62]

G. P. Raeber, M. P. Lutolf and J. A. Hubbell, Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration,, Biophys. J., 89 (2005), 1374. Google Scholar

[63]

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg and S. C. George, Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,, Biophys. J., 92 (2007), 2212. doi: 10.1529/biophysj.106.097998. Google Scholar

[64]

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons and A. R. Horwitz, Cell migration: Integrating signals from front to back,, Science, 302 (2003), 1704. Google Scholar

[65]

B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson and S. L. Voytik-Harbin, Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,, J. Biomech. Eng., 124 (2002), 214. doi: 10.1115/1.1449904. Google Scholar

[66]

C. G. Rolli, T. Seufferlein, R. Kemkemer and J. P. Spatz, Impact of tumor cell cytoskeleton organization on invasiveness and migration: A microchannel-based approach,, PLoS ONE, 5 (2010). Google Scholar

[67]

B. M. Rubenstein and L. J. Kaufman, The role of extracellular matrix in glioma invasion: A Cellular Potts Model approach,, Biophys. J., 95 (2006), 5661. Google Scholar

[68]

F. Sabeh, R. Shimizu-Hirota and S. J. Weiss, Protease-dependent versus -independent cancer cell invasion programs: Three-dimensional amoeboid movement revisited,, J. Cell. Biol., 185 (2009), 11. Google Scholar

[69]

E. Sahai, Illuminating the metastatic process,, Nat. Rev. Cancer, 7 (2007), 737. Google Scholar

[70]

M. Scianna, A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell,, Bull. Math. Biol., 76 (2011), 1253. Google Scholar

[71]

M. Scianna and L. Preziosi, Multiscale developments of the Cellular Potts Model,, Multiscale Model. Simul., 10 (2012), 342. Google Scholar

[72]

M. T. Sheu, J. C. Huang, G. C. Yeh and H. O. Ho, Characterization of collagen gel solutions and collagen matrices for cell culture,, Biomaterials, 22 (2001), 1713. doi: 10.1016/S0142-9612(00)00315-X. Google Scholar

[73]

S. Schmidt and P. Friedl, Interstitial cell migration: Integrin-dependent and alternative adhesion mechanisms,, Cell. Tissue Res., 339 (2010), 83. doi: 10.1007/s00441-009-0892-9. Google Scholar

[74]

R. C. Siegel, Collagen cross-linking. Synthesis of collagen cross-links in vitro with highly purified lysyl oxidase,, J. Biol. Chem., 251 (1976), 5786. Google Scholar

[75]

C. Spadaccio, A. Rainer, S. De Porcellinis, M. Centola, F. De Marco, M. Chello, M. Trombetta, M. and J. A. Genovese, A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study,, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2010 (2010), 843. Google Scholar

[76]

M. S. Steinberg, Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation,, Science, 141 (1963), 401. Google Scholar

[77]

M. S. Steinberg, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells,, J. Exp. Zool., 171 (1970), 395. Google Scholar

[78]

D. G. Stupack, The biology of integrins,, Oncology, 21 (2007), 6. Google Scholar

[79]

T. A. Ulrich, E. M. De Juan Pardo and S. Kumar, The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells,, Cancer Res., 69 (2009), 4167. Google Scholar

[80]

M. C. Wake, C. W. Patrick and A. G. Mikos, Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates,, Cell. Transplant., 3 (1994), 339. Google Scholar

[81]

K. Wolf, Y. I. Wu, Y. Liu, J. Geiger and E. Tam, Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion,, Nat. Cell. Biol., 9 (2007), 893. Google Scholar

[82]

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. Von Andrian, J. Van Rheenen, E. Deryugina and P. Friedl, Collagen-based cell migration models in vitro and in vivo,, Semin. Cell. Dev. Biol., 20 (2009), 931. Google Scholar

[83]

K. Wolf and P. Friedl, Extracellular matrix determinants of proteolytic and non-proteolytic cell migration,, Trends Cell. Biol., 21 (2011), 736. doi: 10.1016/j.tcb.2011.09.006. Google Scholar

[84]

K. Wolf, I. Mazo, H. Leung, K. Engelke, U. H. Von Andrian, E. I. Deryugina, A. Y. Strongin, E. B. Bröcker and P. Friedl, Compensation mechanism in tumor cell migration mesenchymalmoeboid transition after blocking of pericellular proteolysis,, J. Cell. Biol., 160 (2003), 267. Google Scholar

[85]

Y. L. Yang and L. J. Kaufman, Rheology and confocal reflectance microscopy as probes of mechanical properties and structure during collagen and collagen/hyaluronan self-assembly,, Biophys. J., 96 (2009), 1566. Google Scholar

[86]

I. V. Yannas, E. Lee, D. P. Orgill, E. M. Skrabut, G. F. Murphy, Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin,, Proc. Natl. Acad. Sci. U. S. A., 86 (1989), 933. doi: 10.1073/pnas.86.3.933. Google Scholar

[87]

M. H. Zaman, P. Matsudaira and D. A. Lauffenburger, Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration,, Ann. Biomed. Eng., 35 (2007), 91. Google Scholar

[88]

M. H. Zaman, L. M. Trapani, A. L. Sieminski, D. Mackellar, H. Gong, R. D. Kamm, A. Wells, D. A. Lauffenburger and P. Matsudaira, Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis,, Proc. Natl. Acad. Sci. USA, 103 (2006), 10889. Google Scholar

show all references

References:
[1]

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, "Molecular Biology of the Cell,", $3^{rd}$ edition, (1994). Google Scholar

[2]

M. Arnold, V. C. Hirschfeld-Warneken, T. Lohmüller, P. Heil, J. Blümmel, E. A. Cavalcanti-Adam, M. López-García, P. Walther, H. Kessler, B. Geiger and J. P. Spatz, Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing,, Nano Lett., 8 (2008), 2063. Google Scholar

[3]

M. Bajénoff, J. G. Egen, L. Y. Koo, J. P. Laugier, F. Brau, N. Glaichenhaus and R. N. Germain, Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes,, Immunity, 25 (2006), 989. doi: 10.1016/j.immuni.2006.10.011. Google Scholar

[4]

A. Balter, R. M. Merks, N. J. Poplawski, M. Swat and J. A. Glazier, The Glazier-Graner-Hogeweg model: Extensions, future directions, and opportunities for further study,, in, (2007), 157. Google Scholar

[5]

A. L. Bauer, T. L. Jackson and Y. Jiang, A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis,, Biophys. J., 92 (2007), 3105. doi: 10.1529/biophysj.106.101501. Google Scholar

[6]

C. Beadle, M. C. Assanah, P. Monzo, R. Vallee, S. Rosenfeld and P. Canoll, The role of myosin ii in glioma invasion of the brain,, Mol. Biol. Cell., 19 (2008), 3357. doi: 10.1091/mbc.E08-03-0319. Google Scholar

[7]

J. Behring, R. Junker, X. F. Walboomers, B. Chessnut and J. A. Jansen, Toward guided tissue and bone regeneration: Morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review,, Odontology, 96 (2008), 1. Google Scholar

[8]

A. O. Brightman, B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson and S. L. Voytik-Harbin, Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro,, Biopolymers, 54 (2000), 222. doi: 10.1002/1097-0282(200009)54:3<222::AID-BIP80>3.0.CO;2-K. Google Scholar

[9]

A. Brock, E. Chang, C. C. Ho, P. LeDuc, X. Jiang, G. M. Whitesides and D. E. Ingber, Geometric determinants of directional cell motility revealed using microcontact printing,, Langmuir, 19 (2003), 1611. Google Scholar

[10]

B. T. Burgess, J. L. Myles and R. B. Dickinson, Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of RGD-grafted collagen,, Ann. Biomed. Eng., 28 (2003), 110. Google Scholar

[11]

R. M. Capito and M. Spector, Scaffold-based articular cartilage repair,, IEEE Eng. Med. Biol. Mag., 22 (2003), 42. Google Scholar

[12]

E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger and J. P. Spatz, Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands,, Biophys. J., 92 (2007), 2964. Google Scholar

[13]

J. Condeelis and J. E. Segall, Intravital imaging of cell movement in tumours,, Nat. Rev. Cancer, 3 (2003), 921. Google Scholar

[14]

M. W. Conklin, J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, A. Friedl and P. J. Keely, Aligned collagen is a prognostic signature for survival in human breast carcinoma,, Am. J. Pathol., 178 (2011), 1221. doi: 10.1016/j.ajpath.2010.11.076. Google Scholar

[15]

R. B. Dickinson, S. Guido and R. T. Tranquillo, Biased cellmigration of fibroblasts exhibiting contact guidance in oriented collagen gels,, Ann. Biomed. Eng., 22 (1994), 342. doi: 10.1007/BF02368241. Google Scholar

[16]

P. A. DiMilla, J. A. Stone, J. A. Quinn, S. M. Albelda and D. A. Lauffenburger, Maximal migration of human smooth-muscle cells on fibronectin and type-IV collagen occurs at an intermediate attachment strength,, J. Cell. Biol., 122 (1993), 729. doi: 10.1083/jcb.122.3.729. Google Scholar

[17]

A. D. Doyle, F. W. Wang, K. Matsumoto and K. M. Yamada, One-dimensional topography underlies three-dimensional fibrillar cell migration,, J. Cell. Biol., 184 (2009), 481. Google Scholar

[18]

N. Dubey, P. C. Letourneau and R. T. Tranquillo, Neuronal contact guidance in magnetically aligned fibrin gels: effect of variation in gel mechano-structural properties,, Biomaterials, 22 (2001), 1065. Google Scholar

[19]

G. A. Dunn and T. Ebendal, Contact guidance on oriented collagen gels,, Exp. Cell. Res., 111 (1978), 475. Google Scholar

[20]

G. A. Dunn, Characterizing a kinesis response: Time-averaged measures of cell speed and directional persistence,, Agents Actions Suppl., 12 (1983), 14. Google Scholar

[21]

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin and D. Discher, Substrate compliance versus ligand density in cell on gel responses,, Biophys. J., 86 (2004), 617. Google Scholar

[22]

P. Friedl, F. Entschladen, C. Conrad, B. Niggemann and K. S. Zänker, CD4+ T-lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize $\beta$1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion,, Eur. J. Immunol., 28 (1998), 2331. Google Scholar

[23]

P. Friedl and E. B. Brocker, The biology of cell locomotion within three-dimensional extracellular matrix,, Cell. Mol. Life Sci., 57 (2000), 41. doi: 10.1007/s000180050498. Google Scholar

[24]

P. Friedl and K. Wolf, Tumour-cell invasion and migration: Diversity and escape mechanisms,, Nat. Rev. Cancer, 3 (2003), 362. Google Scholar

[25]

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne and K. S. Zänker, Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44,, Cancer Res., 57 (1997), 2061. Google Scholar

[26]

P. Friedl, K. Wolf and J. Lammerding, Nuclear mechanics during cell migration,, Curr. Opin. Cell. Biol., 23 (2011). Google Scholar

[27]

P. Friedl and B. Weigelin, Interstitial leukocyte migration and immune function,, Nat. Immunol., 9 (2008), 960. Google Scholar

[28]

P. Friedl and K. Wolf, Plasticity of cell migration: A multiscale tuning model,, J. Cell. Biol., 188 (2009), 11. Google Scholar

[29]

P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer,, Nat. Rev. Mol. Cell. Biol., 10 (2009), 445. Google Scholar

[30]

C. Gaudet, W. Marganski, S. Kim, C. T. Brown, V. Gunderia, M. Dembo and J. Wong, Influence of type I collagen surface density on fibroblast spreading, motility, and contractility,, Biophys. J., 85 (2003), 3329. Google Scholar

[31]

G. Gerlitz and M. Bustin, The role of chromatin structure in cell migration,, Trends Cell. Biol., 21 (2011), 6. Google Scholar

[32]

C. Giverso, M. Scianna, L. Preziosi, N. Lo Buono and A. Funaro, Individual cell-based model for in-vitro mesothelial invasion of ovarian cancer,, Math. Model. Nat. Phenom., 5 (2010), 203. Google Scholar

[33]

J. A. Glazier, A. Balter and N. J. Poplawski, Magnetization to morphogenesis: A brief history of the Glazier-Graner-Hogeweg model,, in, (2007), 79. Google Scholar

[34]

J. A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells,, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47 (1993), 2128. Google Scholar

[35]

S. L. Goodman, G. Risse and K. Vondermark, The E8 subfragment of laminin promotes locomotion of myoblasts over extracellular- matrix,, J. Cell. Biol., 109 (1989), 799. Google Scholar

[36]

F. Graner and J. A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model,, Phys. Rev. Lett., 69 (1992), 2013. doi: 10.1103/PhysRevLett.69.2013. Google Scholar

[37]

B. A. Harley, H. Kim, M. H. Zaman, I. V. Yannas, D. A. Lauffenburger and L. J. Gibson, Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions,, Biophys. J., 95 (2008), 4013. doi: 10.1529/biophysj.107.122598. Google Scholar

[38]

B. A. Harley, M. H. Spilker, J. W. Wu, K. Asano, H. P. Hsu, M. Spector and I. V. Yannas, Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps,, Cells Tissues Organs, 176 (2008), 153. Google Scholar

[39]

O. Ilina and P. Friedl, Mechanisms of collective cell migration at a glance,, J. Cell Sci., 122 (2009), 3203. Google Scholar

[40]

E. Ising, Beitrag zur theorie des ferromagnetismus,, Z. Physik., 31 (1925). Google Scholar

[41]

R. M. Kuntz and W. M. Saltzman, Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration,, Biophys. J., 72 (1997), 1472. doi: 10.1016/S0006-3495(97)78793-9. Google Scholar

[42]

S. Kurosaka and A. Kashina, Cell biology of embryonic migration,, Birth Defects Res. C. Embryo Today, 84 (2008), 102. Google Scholar

[43]

E. Lamers, R. Van Horssen, J. Te Riet, F. C. Van Delft, R. Luttge, X. F. Walboomers and J. A. Jansen, The influence of nanoscale topographical cues on initial osteoblast morphology and migration,, Eur. Cell. Mater., 9 (2010), 329. Google Scholar

[44]

D. A. Lauffenburger and J. J. Lindermann, "Receptors: Bodels for Binding, Trafficking, and Signaling,", Oxford University Press, (1996). Google Scholar

[45]

D. A. Lauffenburger and A. F. Horwitz, Cell migration: a physically integrated molecular process,, Cell, 84 (1996), 359. doi: 10.1016/S0092-8674(00)81280-5. Google Scholar

[46]

D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B. A. Imhof and M. Bastmeyer, Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion,, J. Cell. Sci., 117 (2004), 41. doi: 10.1242/jcs.00836. Google Scholar

[47]

M. P. Lutolf, J. L. Lauer-Fields, H. G. Schmoekel, A. T. Metters, F. E. Weber, G. B. Fields and J. A. Hubbell, Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics,, Proc. Natl. Acad. Sci. U. S. A., 100 (2003), 5413. Google Scholar

[48]

K. Maaser, K. Wolf, C. E. Klein, B. Niggemann, K. S. Zänker, E. B. Bröcker and Friedl, Functional hierarchy of simultaneously expressed adhesion receptors: Integrin $\alpha$2$\beta$1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices,, Mol. Biol. Cell., 10 (1999), 3067. Google Scholar

[49]

A. W. Mahoney, B. G. Smith, N. S. Flann and G. J. Podgorski, Discovering novel cancer therapies: A computational modeling and search approach,, in, (2008), 233. Google Scholar

[50]

A. F. M arée, V. A. Grieneisen and P. Hogeweg, The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis,, in, (2007), 107. Google Scholar

[51]

R. M. Merks, E. D. Perryn, A. Shirinifard and J. A. Glazier, Contact-inhibited chemotaxis in de novo and sprouting blood vessel growth,, PLoS Comput. Biol., 4 (2008). Google Scholar

[52]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines,, J. Chem. Phys., 21 (1953), 1087. Google Scholar

[53]

A. Mogilner and G. Oster, Polymer motors: Ppushing out the front and pulling up the back,, Current Biology, 13 (2003), 721. Google Scholar

[54]

F. J. O'Brien, B. A. Harley, I. V. Yannas and L. Gibson, Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds,, Biomaterials, 25 (2004), 1077. Google Scholar

[55]

L. H. Olde Damink, P. J. Dijkstra, M. J. Luyn, P. B. Wachem, P. Nieuwenhuis and J. Feijen, Glutaraldehyde as a crosslinking agent for collagen-based biomaterials,, J. Mater. Sci. Mater. Med., 6 (1995), 460. Google Scholar

[56]

J. M. Orban, L. B. Wilson, J. A. Kofroth, M. S. El-Kurdi, T. M. Maul and D. A. Vorp, Crosslinking of collagen gels by transglutaminase,, J. Biomed. Mater. Res. A, 68 (2004), 756. Google Scholar

[57]

S. P. Palecek, J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger and A. F. Horwitz, Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness,, Nature, 385 (1997), 537. Google Scholar

[58]

E. D. Perryn, A. Czirok and C. D. Little, Vascular sprout formation entails tissue deformations and VE-cadherin-dependent cell-autonomous motility,, Dev. Biol., 313 (2008), 545. doi: 10.1016/j.ydbio.2007.10.036. Google Scholar

[59]

S. R. Peyton and A. J. Putnam, Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion,, J. Cell. Physiol., 204 (2005), 198. doi: 10.1002/jcp.20274. Google Scholar

[60]

T. D. Pollard and G. G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments,, Cell, 112 (2003), 453. doi: 10.1016/S0092-8674(03)00120-X. Google Scholar

[61]

R. B. Potts, Some generalized order-disorder transformations,, Proc. Camb. Phil. Soc., 48 (1952), 106. Google Scholar

[62]

G. P. Raeber, M. P. Lutolf and J. A. Hubbell, Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration,, Biophys. J., 89 (2005), 1374. Google Scholar

[63]

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg and S. C. George, Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,, Biophys. J., 92 (2007), 2212. doi: 10.1529/biophysj.106.097998. Google Scholar

[64]

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons and A. R. Horwitz, Cell migration: Integrating signals from front to back,, Science, 302 (2003), 1704. Google Scholar

[65]

B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson and S. L. Voytik-Harbin, Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,, J. Biomech. Eng., 124 (2002), 214. doi: 10.1115/1.1449904. Google Scholar

[66]

C. G. Rolli, T. Seufferlein, R. Kemkemer and J. P. Spatz, Impact of tumor cell cytoskeleton organization on invasiveness and migration: A microchannel-based approach,, PLoS ONE, 5 (2010). Google Scholar

[67]

B. M. Rubenstein and L. J. Kaufman, The role of extracellular matrix in glioma invasion: A Cellular Potts Model approach,, Biophys. J., 95 (2006), 5661. Google Scholar

[68]

F. Sabeh, R. Shimizu-Hirota and S. J. Weiss, Protease-dependent versus -independent cancer cell invasion programs: Three-dimensional amoeboid movement revisited,, J. Cell. Biol., 185 (2009), 11. Google Scholar

[69]

E. Sahai, Illuminating the metastatic process,, Nat. Rev. Cancer, 7 (2007), 737. Google Scholar

[70]

M. Scianna, A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell,, Bull. Math. Biol., 76 (2011), 1253. Google Scholar

[71]

M. Scianna and L. Preziosi, Multiscale developments of the Cellular Potts Model,, Multiscale Model. Simul., 10 (2012), 342. Google Scholar

[72]

M. T. Sheu, J. C. Huang, G. C. Yeh and H. O. Ho, Characterization of collagen gel solutions and collagen matrices for cell culture,, Biomaterials, 22 (2001), 1713. doi: 10.1016/S0142-9612(00)00315-X. Google Scholar

[73]

S. Schmidt and P. Friedl, Interstitial cell migration: Integrin-dependent and alternative adhesion mechanisms,, Cell. Tissue Res., 339 (2010), 83. doi: 10.1007/s00441-009-0892-9. Google Scholar

[74]

R. C. Siegel, Collagen cross-linking. Synthesis of collagen cross-links in vitro with highly purified lysyl oxidase,, J. Biol. Chem., 251 (1976), 5786. Google Scholar

[75]

C. Spadaccio, A. Rainer, S. De Porcellinis, M. Centola, F. De Marco, M. Chello, M. Trombetta, M. and J. A. Genovese, A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study,, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2010 (2010), 843. Google Scholar

[76]

M. S. Steinberg, Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation,, Science, 141 (1963), 401. Google Scholar

[77]

M. S. Steinberg, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells,, J. Exp. Zool., 171 (1970), 395. Google Scholar

[78]

D. G. Stupack, The biology of integrins,, Oncology, 21 (2007), 6. Google Scholar

[79]

T. A. Ulrich, E. M. De Juan Pardo and S. Kumar, The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells,, Cancer Res., 69 (2009), 4167. Google Scholar

[80]

M. C. Wake, C. W. Patrick and A. G. Mikos, Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates,, Cell. Transplant., 3 (1994), 339. Google Scholar

[81]

K. Wolf, Y. I. Wu, Y. Liu, J. Geiger and E. Tam, Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion,, Nat. Cell. Biol., 9 (2007), 893. Google Scholar

[82]

K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. Von Andrian, J. Van Rheenen, E. Deryugina and P. Friedl, Collagen-based cell migration models in vitro and in vivo,, Semin. Cell. Dev. Biol., 20 (2009), 931. Google Scholar

[83]

K. Wolf and P. Friedl, Extracellular matrix determinants of proteolytic and non-proteolytic cell migration,, Trends Cell. Biol., 21 (2011), 736. doi: 10.1016/j.tcb.2011.09.006. Google Scholar

[84]

K. Wolf, I. Mazo, H. Leung, K. Engelke, U. H. Von Andrian, E. I. Deryugina, A. Y. Strongin, E. B. Bröcker and P. Friedl, Compensation mechanism in tumor cell migration mesenchymalmoeboid transition after blocking of pericellular proteolysis,, J. Cell. Biol., 160 (2003), 267. Google Scholar

[85]

Y. L. Yang and L. J. Kaufman, Rheology and confocal reflectance microscopy as probes of mechanical properties and structure during collagen and collagen/hyaluronan self-assembly,, Biophys. J., 96 (2009), 1566. Google Scholar

[86]

I. V. Yannas, E. Lee, D. P. Orgill, E. M. Skrabut, G. F. Murphy, Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin,, Proc. Natl. Acad. Sci. U. S. A., 86 (1989), 933. doi: 10.1073/pnas.86.3.933. Google Scholar

[87]

M. H. Zaman, P. Matsudaira and D. A. Lauffenburger, Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration,, Ann. Biomed. Eng., 35 (2007), 91. Google Scholar

[88]

M. H. Zaman, L. M. Trapani, A. L. Sieminski, D. Mackellar, H. Gong, R. D. Kamm, A. Wells, D. A. Lauffenburger and P. Matsudaira, Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis,, Proc. Natl. Acad. Sci. USA, 103 (2006), 10889. Google Scholar

[1]

A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250

[2]

Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure & Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243

[3]

Yangjin Kim, Soyeon Roh. A hybrid model for cell proliferation and migration in glioblastoma. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 969-1015. doi: 10.3934/dcdsb.2013.18.969

[4]

Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75

[5]

Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson. An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1219-1235. doi: 10.3934/mbe.2015.12.1219

[6]

Jacek Banasiak, Amartya Goswami. Singularly perturbed population models with reducible migration matrix 1. Sova-Kurtz theorem and the convergence to the aggregated model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 617-635. doi: 10.3934/dcds.2015.35.617

[7]

Tracy L. Stepien, Hal L. Smith. Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3203-3216. doi: 10.3934/dcds.2015.35.3203

[8]

Jan Kelkel, Christina Surulescu. On some models for cancer cell migration through tissue networks. Mathematical Biosciences & Engineering, 2011, 8 (2) : 575-589. doi: 10.3934/mbe.2011.8.575

[9]

Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán. A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 973-986. doi: 10.3934/mbe.2011.8.973

[10]

Claude-Michel Brauner, Michael L. Frankel, Josephus Hulshof, Alessandra Lunardi, G. Sivashinsky. On the κ - θ model of cellular flames: Existence in the large and asymptotics. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 27-39. doi: 10.3934/dcdss.2008.1.27

[11]

Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. On the stability of a nonlinear maturity structured model of cellular proliferation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 501-522. doi: 10.3934/dcds.2005.12.501

[12]

Ali Ashher Zaidi, Bruce Van Brunt, Graeme Charles Wake. A model for asymmetrical cell division. Mathematical Biosciences & Engineering, 2015, 12 (3) : 491-501. doi: 10.3934/mbe.2015.12.491

[13]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[14]

Britnee Crawford, Christopher Kribs-Zaleta. A metapopulation model for sylvatic T. cruzi transmission with vector migration. Mathematical Biosciences & Engineering, 2014, 11 (3) : 471-509. doi: 10.3934/mbe.2014.11.471

[15]

Keith E. Howard. A size structured model of cell dwarfism. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 471-484. doi: 10.3934/dcdsb.2001.1.471

[16]

Hiroshi Matano, Yoichiro Mori. Global existence and uniqueness of a three-dimensional model of cellular electrophysiology. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1573-1636. doi: 10.3934/dcds.2011.29.1573

[17]

Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327

[18]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[19]

Houssein Ayoub, Bedreddine Ainseba, Michel Langlais, Rodolphe Thiébaut. Parameters identification for a model of T cell homeostasis. Mathematical Biosciences & Engineering, 2015, 12 (5) : 917-936. doi: 10.3934/mbe.2015.12.917

[20]

Mostafa Adimy, Oscar Angulo, Catherine Marquet, Leila Sebaa. A mathematical model of multistage hematopoietic cell lineages. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 1-26. doi: 10.3934/dcdsb.2014.19.1

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]